Linux:信号的概念与产生

信号概念

信号是进程之间事件异步通知的一种方式

Linux命令行中,我们可以通过ctrl + c来终止一个前台运行的进程,其实这就是一个发送信号的行为。我们按下ctrl + c是在shell进程中,而被终止的进程,是在前台运行的另外一个进程。因此信号是一种进程之间的通知方式。

可以通过指令kill -l来查询信号:以上就是Linux中的全部信号,它们分为两个区间:[1, 31] 和[34, 64],也就是说没有0,32,33这三个信号,虽然信号的最大编号为64,但实际上只有62个信号。

  • [1, 31]:这些信号称为非实时信号,当进程收到这些信号后,可以自己选择合适的时候处理
  • [34, 64]:这些信号称为实时信号,当进程收到这些信号后,必须立马处理

由于现在的操作系统基本都是分时操作系统,因此实时信号其实是不符合设计理念的,几乎用不到实时信号,本博客只讲解非实时信号

所有信号都是大写的单词,在C/C++中,一般来说就是大写的,其实信号名就是宏。

那么进程收到信号后要怎么处理呢?

进程有三种处理信号的方式:

  1. 忽略此信号
  2. 执行信号的默认处理函数
  3. 执行信号的自定义处理函数,这种方式也称为信号捕捉

其中TermIgnCoreStopCont就是信号处理的默认行为

  • Term:默认操作是终止进程
  • Ign:默认操作是忽略信号
  • Core:默认操作是终止进程并转储核心
  • Stop:默认操作是暂停进程
  • Cont:默认操作是,如果该进程当前已暂停,则继续该进程

signal函数,包含在头文件<signal.h>中,可以自定义信号的处理方式,函数原型如下:

sighandler_t signal(int signum, sighandler_t handler);

其中这个sighandler_t类型,本质是一个void (*)(int)类型的函数指针,也就是说自定义的信号处理函数必须是void (int)的格式。其中这个处理函数的第一个参数int,就是用来接收信号的编号的。

而返回值也是sighandler_t,其返回原先该信号处理的函数的函数指针。

void handler(int sig)
{
    cout << "get sig: " << sig << endl;
}

int main()
{
    signal(2, handler);

    while(true)
    {
        cout << "hello world!" << endl;
        sleep(1);
    }

    return 0;
}

以上代码中,我们通过signal(2, handler);2号信号的处理方式变成了执行函数handler,此后进程收到号信号时,就会执行cout << "get sig: " << sig << endl;了。

2号信号SIGINT就是ctrl + C发送的信号,因此我们可以直接在shell中通过ctrl + C来发送2号信号,从而验证效果。


信号产生

简单讲解了一下信号的三种处理方式后,再来看看信号是如何产生的,在Linux中,信号主要有两种产生方式:软件条件硬件异常

软件信号

在 Linux 中,“软件条件” 发出的信号指的是由 进程自身或其他进程 产生的信号,而不是由硬件中断或其他外部事件触发的信号。

Linux中有多种系统调用可以发送信号,在此我讲解killraiseabortalarm四种接口,其中abort并不是一个系统调用,而是一个用户操作接口。

kill

kill函数用于给指定pid的进程发送指定信号,需要头文件<sys/types.h><signal.h>,函数原型如下:

int kill(pid_t pid, int sig);

参数:

  • pid:收到该信号的进程的pid
  • sig:发送哪一个信号

返回值:

  • 返回0:发送信号成功
  • 返回-1:发送信号失败
void handler (int sig)
{
    cout << "get sig: " << sig << endl;
    exit(1);
}

int main()
{
    pid_t id = fork();

    if (id == 0) // 子进程
    {
        signal(2, handler);

        while (true)
        {
            cout << "I am child process" << endl;
            sleep(1);
        }
    }

    sleep(5);
    kill(id, 2);

    return 0;
}

以上示例中,父进程通过fork创建子进程,sleep五秒后通过kill(id, 2);给子进程发送(2) SIGINT信号。子进程通过signal(2, handler);修改了信号处理方式,随后每秒钟输出一次I am child process。

在handler中,会先输出get sig: 2,表示自己收到了信号,然后exit退出进程。

另外的,也可以通过kill指令发送信号,格式为:

kill -sig pid

其中sig为要发送的信号,pid为收到信号的进程pid

其实kill指令底层就是调用kill接口,依然属于系统调用的范围。 


raise

raise函数用于给自己发送信号,需要头文件<signal.h>,函数原型如下:

int raise(int sig);

参数:

  • sig:发送哪一个信号

返回值:

  • 返回0:发送信号成功
  • 返回-1:发送信号失败
void handler(int sig)
{
    cout << "get sig: " << sig << endl;
    exit(1);
}

int main()
{
    signal(2, handler);

    int cnt = 5;
    while (cnt)
    {
        cout << "I am a process cnt = " << cnt-- << endl;
        sleep(1);
    }

    raise(2);

    return 0;
}

先通过signal(2, handler);修改信号的处理函数,随后循环五次,输出"I am a process cnt = ",最后通过raise(2);给自己发送(2) SIGINT信号。


abort

abort函数用于给自己发送(6) SIGABRT信号,需要头文件<stdlib.h>,属于用户操作接口,函数原型如下:

void abort(void);

这个函数功能十分简单,就是给自己发送(6) SIGABRT信号,示例:

int main()
{
    abort();
    
    return 0;
}

输出结果:

Aborted

最后进程输出了Aborted表示自己收到了(6) SIGABRT信号。


alarm

alarm函数用于设定一个闹钟,在一定之间后给当前进程发送信号(14) SIGALRM,需要头文件<unistd.h>,函数原型如下:

unsigned int alarm(unsigned int seconds);

参数:

  • seconds:在seconds秒后发送信号

返回值:

  • 如果之前有还没响的闹钟:取消上一次的闹钟,并返回上一次闹钟的剩余秒数
  • 如果之前没有闹钟了:返回0
void handler(int sig)
{
    cout << "get sig: " << sig << endl;
    exit(1);
}

int main()
{
    signal(SIGALRM, handler);
    alarm(1);

    int i = 0;
    while(true)
    {
        cout << i++ << endl;
    }

    return 0;
}

以上代码中,先通过signal(SIGALRM, handler);自定义信号(14) SIGALRM的处理方式。然后通过alarm(1);设定一秒钟的闹钟,在一秒内,程序会不断执行while循环让i++,我们可以看看一秒内计算机可以执行多少次i++

输出结果:

74560
get sig:14

可以看到,计算到74560时,就收到了SIGALRM,终止进程了。 


硬件信号

硬件信号指的是由 硬件事件 触发的信号,而不是由软件代码逻辑控制的。

具体来说,以下情况属于硬件条件发出的信号:

  • 中断: 硬件设备,例如键盘、鼠标、网络接口等,在发生事件时会向 CPU 发送中断信号,例如键盘按键按下、网络数据包到达等。
  • 异常: CPU 在执行指令过程中,如果遇到错误情况,例如除以零、内存访问错误等,会产生异常信号。
  • 时钟中断: 系统定时器会定期向 CPU 发送时钟中断信号,用于调度进程和执行定时任务。
键盘产生信号

通过键盘发送信号是最简单的信号发送方式,最常用的有ctrl + Cctrl + \

  • ctrl + C:向前台进程发送(2) SIGINT信号,效果为直接终止进程
  • ctrl + \:向前台进程发送(3) SIGQUIT信号,效果为直接终止进程

硬件中断

硬件给进程发送信号的本质,其实是通过硬件中断

硬件中断是指硬件设备向 CPU 发送的信号,通知 CPU 有事件发生需要处理。当一个硬件设备需要向 CPU 汇报事件发生时,它会向 CPU 发送一个中断信号。CPU 接收这个信号后,会暂停当前执行的任务,转而去处理硬件设备的请求。

int main()
{
    int a = 5 / 0;

    return 0;
}

这是一个很经典的除零错误,如果我们强行运行这个进程,会报出错误Floating point exception,本质上是收到了信号(8) SIGFPE,其实本质上是发生了硬件中断。 

  • CPUCPU是一个硬件,其要处理计算,而5/0这个计算过程就是在CPU中完成的,当CPU检测到这个计算中0做了除数,于是对自己发起硬件中断
  • 操作系统:操作系统检测到硬件中断后,跳转到中断处理程序中断处理程序Linux内核的一部分),然后检测该硬件中断是什么原因,发现是因为除零错误,于是给进程发送(8) SIGPFE信号
  • 进程:进程收到操作系统发来的(8) SIGPFE信号后,执行相应的处理措施

我们之前的ctrl + C按键发送(2) SIGINT信号,本质也是硬件中断,当我们从键盘输入了数据后,键盘向CPU发出硬件中断,随后CPU去执行操作系统中的硬件中断程序,发现是用户按下了ctrl + C,于是操作系统向进程发送(2) SIGINT信号。

与软件条件信号相比,硬件条件信号具有以下特点:

  • 由硬件触发: 硬件条件信号的产生是由硬件事件触发的,而不是由代码逻辑决定的
  • 不可控性: 硬件条件信号的产生通常无法被进程控制,例如硬件设备的故障、网络连接中断等。
  • 不可预测性: 硬件条件信号的产生通常是不可预测的,因为它们是由硬件事件触发的。

 

 

 

 

 

 

 

 

 

 

 

 

 

相关推荐

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-15 07:50:03       66 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-15 07:50:03       70 阅读
  3. 在Django里面运行非项目文件

    2024-07-15 07:50:03       57 阅读
  4. Python语言-面向对象

    2024-07-15 07:50:03       68 阅读

热门阅读

  1. PyTorch使用细节

    2024-07-15 07:50:03       22 阅读
  2. Matplotlib库学习之figure.add_subplot函数

    2024-07-15 07:50:03       24 阅读
  3. uniapp 初始学习1

    2024-07-15 07:50:03       30 阅读
  4. 在 YAML 中的变量(使用 &和 * 定义及引用变量)

    2024-07-15 07:50:03       24 阅读
  5. Julia 交互式命令

    2024-07-15 07:50:03       24 阅读
  6. uniapp颜色选择器

    2024-07-15 07:50:03       21 阅读
  7. 什么是DDoS攻击

    2024-07-15 07:50:03       25 阅读
  8. [NeetCode 150] Word Ladder

    2024-07-15 07:50:03       23 阅读
  9. nginx+lua 实现URL重定向(根据传入的参数条件)

    2024-07-15 07:50:03       20 阅读
  10. Vue2-案例tab切换栏高亮

    2024-07-15 07:50:03       25 阅读
  11. 项目管理·沟通管理

    2024-07-15 07:50:03       26 阅读