昇思25天学习打卡营第22天 | GAN图像生成

内容介绍:

生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。

最初,GAN由Ian J. Goodfellow于2014年发明,其主要由两个不同的模型共同组成——生成器(Generative Model)和判别器(Discriminative Model):

  • 生成器的任务是生成看起来像训练图像的“假”图像;
  • 判别器需要判断从生成器输出的图像是真实的训练图像还是虚假的图像。

GAN通过设计生成模型和判别模型这两个模块,使其互相博弈学习产生了相当好的输出。

GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。在这个框架中,将会同时训练两个模型——捕捉数据分布的生成模型 𝐺 和估计样本是否来自训练数据的判别模型 𝐷 。

在训练过程中,生成器会不断尝试通过生成更好的假图像来骗过判别器,而判别器在这过程中也会逐步提升判别能力。这种博弈的平衡点是,当生成器生成的假图像和训练数据图像的分布完全一致时,判别器拥有50%的真假判断置信度。

用 𝑥 代表图像数据,用 𝐷(𝑥)表示判别器网络给出图像判定为真实图像的概率。在判别过程中,𝐷(𝑥)需要处理作为二进制文件的大小为 1×28×281×28×28 的图像数据。当 𝑥 来自训练数据时,𝐷(𝑥) 数值应该趋近于 11 ;而当 𝑥 来自生成器时,𝐷(𝑥) 数值应该趋近于 00 。因此 𝐷(𝑥) 也可以被认为是传统的二分类器。

用 𝑧 代表标准正态分布中提取出的隐码(隐向量),用 𝐺(𝑧):表示将隐码(隐向量) 𝑧 映射到数据空间的生成器函数。函数 𝐺(𝑧) 的目标是将服从高斯分布的随机噪声 𝑧 通过生成网络变换为近似于真实分布 𝑝𝑑𝑎𝑡𝑎(𝑥) 的数据分布,我们希望找到 θθ 使得 𝑝𝐺(𝑥;𝜃) 和 𝑝𝑑𝑎𝑡𝑎(𝑥) 尽可能的接近,其中 𝜃 代表网络参数。

𝐷(𝐺(𝑧)) 表示生成器 𝐺 生成的假图像被判定为真实图像的概率,𝐷 和 𝐺 在进行一场博弈,𝐷 想要最大程度的正确分类真图像与假图像,也就是参数 log𝐷(𝑥)⁡;而 𝐺 试图欺骗 𝐷 来最小化假图像被识别到的概率,也就是参数 log(1−𝐷(𝐺(𝑧)))。因此GAN的损失函数为:

具体内容:

1. 导包

from download import download
import numpy as np
import mindspore.dataset as ds
import matplotlib.pyplot as plt
import random
import numpy as np
from mindspore import Tensor
from mindspore.common import dtype
from mindspore import nn
import mindspore.ops as ops
import os
import time
import matplotlib.pyplot as plt
import mindspore as ms
from mindspore import Tensor, save_checkpoint
import cv2
import matplotlib.animation as animation
import mindspore as ms

2. 下载数据

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip"
download(url, ".", kind="zip", replace=True)

3. 数据加载

batch_size = 64
latent_size = 100  # 隐码的长度

train_dataset = ds.MnistDataset(dataset_dir='./MNIST_Data/train')
test_dataset = ds.MnistDataset(dataset_dir='./MNIST_Data/test')

def data_load(dataset):
    dataset1 = ds.GeneratorDataset(dataset, ["image", "label"], shuffle=True, python_multiprocessing=False,num_samples=10000)
    # 数据增强
    mnist_ds = dataset1.map(
        operations=lambda x: (x.astype("float32"), np.random.normal(size=latent_size).astype("float32")),
        output_columns=["image", "latent_code"])
    mnist_ds = mnist_ds.project(["image", "latent_code"])

    # 批量操作
    mnist_ds = mnist_ds.batch(batch_size, True)

    return mnist_ds

mnist_ds = data_load(train_dataset)

iter_size = mnist_ds.get_dataset_size()
print('Iter size: %d' % iter_size)

4. 数据可视化

data_iter = next(mnist_ds.create_dict_iterator(output_numpy=True))
figure = plt.figure(figsize=(3, 3))
cols, rows = 5, 5
for idx in range(1, cols * rows + 1):
    image = data_iter['image'][idx]
    figure.add_subplot(rows, cols, idx)
    plt.axis("off")
    plt.imshow(image.squeeze(), cmap="gray")
plt.show()

5. 隐码构造

# 利用随机种子创建一批隐码
np.random.seed(2323)
test_noise = Tensor(np.random.normal(size=(25, 100)), dtype.float32)
random.shuffle(test_noise)

6. 生成器

img_size = 28  # 训练图像长(宽)

class Generator(nn.Cell):
    def __init__(self, latent_size, auto_prefix=True):
        super(Generator, self).__init__(auto_prefix=auto_prefix)
        self.model = nn.SequentialCell()
        # [N, 100] -> [N, 128]
        # 输入一个100维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维
        self.model.append(nn.Dense(latent_size, 128))
        self.model.append(nn.ReLU())
        # [N, 128] -> [N, 256]
        self.model.append(nn.Dense(128, 256))
        self.model.append(nn.BatchNorm1d(256))
        self.model.append(nn.ReLU())
        # [N, 256] -> [N, 512]
        self.model.append(nn.Dense(256, 512))
        self.model.append(nn.BatchNorm1d(512))
        self.model.append(nn.ReLU())
        # [N, 512] -> [N, 1024]
        self.model.append(nn.Dense(512, 1024))
        self.model.append(nn.BatchNorm1d(1024))
        self.model.append(nn.ReLU())
        # [N, 1024] -> [N, 784]
        # 经过线性变换将其变成784维
        self.model.append(nn.Dense(1024, img_size * img_size))
        # 经过Tanh激活函数是希望生成的假的图片数据分布能够在-1~1之间
        self.model.append(nn.Tanh())

    def construct(self, x):
        img = self.model(x)
        return ops.reshape(img, (-1, 1, 28, 28))

net_g = Generator(latent_size)
net_g.update_parameters_name('generator')

7. 判别器

 # 判别器
class Discriminator(nn.Cell):
    def __init__(self, auto_prefix=True):
        super().__init__(auto_prefix=auto_prefix)
        self.model = nn.SequentialCell()
        # [N, 784] -> [N, 512]
        self.model.append(nn.Dense(img_size * img_size, 512))  # 输入特征数为784,输出为512
        self.model.append(nn.LeakyReLU())  # 默认斜率为0.2的非线性映射激活函数
        # [N, 512] -> [N, 256]
        self.model.append(nn.Dense(512, 256))  # 进行一个线性映射
        self.model.append(nn.LeakyReLU())
        # [N, 256] -> [N, 1]
        self.model.append(nn.Dense(256, 1))
        self.model.append(nn.Sigmoid())  # 二分类激活函数,将实数映射到[0,1]

    def construct(self, x):
        x_flat = ops.reshape(x, (-1, img_size * img_size))
        return self.model(x_flat)

net_d = Discriminator()
net_d.update_parameters_name('discriminator')

8. 损失函数和优化器

lr = 0.0002  # 学习率

# 损失函数
adversarial_loss = nn.BCELoss(reduction='mean')

# 优化器
optimizer_d = nn.Adam(net_d.trainable_params(), learning_rate=lr, beta1=0.5, beta2=0.999)
optimizer_g = nn.Adam(net_g.trainable_params(), learning_rate=lr, beta1=0.5, beta2=0.999)
optimizer_g.update_parameters_name('optim_g')
optimizer_d.update_parameters_name('optim_d')

9. 模型训练

total_epoch = 12  # 训练周期数
batch_size = 64  # 用于训练的训练集批量大小

# 加载预训练模型的参数
pred_trained = False
pred_trained_g = './result/checkpoints/Generator99.ckpt'
pred_trained_d = './result/checkpoints/Discriminator99.ckpt'

checkpoints_path = "./result/checkpoints"  # 结果保存路径
image_path = "./result/images"  # 测试结果保存路径
# 生成器计算损失过程
def generator_forward(test_noises):
    fake_data = net_g(test_noises)
    fake_out = net_d(fake_data)
    loss_g = adversarial_loss(fake_out, ops.ones_like(fake_out))
    return loss_g


# 判别器计算损失过程
def discriminator_forward(real_data, test_noises):
    fake_data = net_g(test_noises)
    fake_out = net_d(fake_data)
    real_out = net_d(real_data)
    real_loss = adversarial_loss(real_out, ops.ones_like(real_out))
    fake_loss = adversarial_loss(fake_out, ops.zeros_like(fake_out))
    loss_d = real_loss + fake_loss
    return loss_d

# 梯度方法
grad_g = ms.value_and_grad(generator_forward, None, net_g.trainable_params())
grad_d = ms.value_and_grad(discriminator_forward, None, net_d.trainable_params())

def train_step(real_data, latent_code):
    # 计算判别器损失和梯度
    loss_d, grads_d = grad_d(real_data, latent_code)
    optimizer_d(grads_d)
    loss_g, grads_g = grad_g(latent_code)
    optimizer_g(grads_g)

    return loss_d, loss_g

# 保存生成的test图像
def save_imgs(gen_imgs1, idx):
    for i3 in range(gen_imgs1.shape[0]):
        plt.subplot(5, 5, i3 + 1)
        plt.imshow(gen_imgs1[i3, 0, :, :] / 2 + 0.5, cmap="gray")
        plt.axis("off")
    plt.savefig(image_path + "/test_{}.png".format(idx))

# 设置参数保存路径
os.makedirs(checkpoints_path, exist_ok=True)
# 设置中间过程生成图片保存路径
os.makedirs(image_path, exist_ok=True)

net_g.set_train()
net_d.set_train()

# 储存生成器和判别器loss
losses_g, losses_d = [], []

for epoch in range(total_epoch):
    start = time.time()
    for (iter, data) in enumerate(mnist_ds):
        start1 = time.time()
        image, latent_code = data
        image = (image - 127.5) / 127.5  # [0, 255] -> [-1, 1]
        image = image.reshape(image.shape[0], 1, image.shape[1], image.shape[2])
        d_loss, g_loss = train_step(image, latent_code)
        end1 = time.time()
        if iter % 10 == 10:
            print(f"Epoch:[{int(epoch):>3d}/{int(total_epoch):>3d}], "
                  f"step:[{int(iter):>4d}/{int(iter_size):>4d}], "
                  f"loss_d:{d_loss.asnumpy():>4f} , "
                  f"loss_g:{g_loss.asnumpy():>4f} , "
                  f"time:{(end1 - start1):>3f}s, "
                  f"lr:{lr:>6f}")

    end = time.time()
    print("time of epoch {} is {:.2f}s".format(epoch + 1, end - start))

    losses_d.append(d_loss.asnumpy())
    losses_g.append(g_loss.asnumpy())

    # 每个epoch结束后,使用生成器生成一组图片
    gen_imgs = net_g(test_noise)
    save_imgs(gen_imgs.asnumpy(), epoch)

    # 根据epoch保存模型权重文件
    if epoch % 1 == 0:
        save_checkpoint(net_g, checkpoints_path + "/Generator%d.ckpt" % (epoch))
        save_checkpoint(net_d, checkpoints_path + "/Discriminator%d.ckpt" % (epoch))

10. 效果显示

plt.figure(figsize=(6, 4))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(losses_g, label="G", color='blue')
plt.plot(losses_d, label="D", color='orange')
plt.xlim(-5,15)
plt.ylim(0, 3.5)
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

11. 转换成动态图

# 将训练过程中生成的测试图转为动态图
image_list = []
for i in range(total_epoch):
    image_list.append(cv2.imread(image_path + "/test_{}.png".format(i), cv2.IMREAD_GRAYSCALE))
show_list = []
fig = plt.figure(dpi=70)
for epoch in range(0, len(image_list), 5):
    plt.axis("off")
    show_list.append([plt.imshow(image_list[epoch], cmap='gray')])

ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)
ani.save('train_test.gif', writer='pillow', fps=1)

12. 模型推理

# 模型生成结果
test_data = Tensor(np.random.normal(0, 1, (25, 100)).astype(np.float32))
images = net_g(test_data).transpose(0, 2, 3, 1).asnumpy()
# 结果展示
fig = plt.figure(figsize=(3, 3), dpi=120)
for i in range(25):
    fig.add_subplot(5, 5, i + 1)
    plt.axis("off")
    plt.imshow(images[i].squeeze(), cmap="gray")
plt.show()

GAN由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器的任务是学习真实数据的分布,并生成尽可能接近真实数据的新样本;而判别器的目标则是准确区分输入数据是真实的还是由生成器伪造的。两者在相互博弈中共同进步,这种设定既新颖又富有哲理。

相关推荐

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-11 10:42:02       101 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-11 10:42:02       108 阅读
  3. 在Django里面运行非项目文件

    2024-07-11 10:42:02       91 阅读
  4. Python语言-面向对象

    2024-07-11 10:42:02       98 阅读

热门阅读

  1. mysql面试题 Day6

    2024-07-11 10:42:02       28 阅读
  2. 人工智能在自动驾驶中的目标检测研究

    2024-07-11 10:42:02       28 阅读
  3. 编程语言 Public:深度解析与未来展望

    2024-07-11 10:42:02       30 阅读
  4. 【SQL】InnoDB中的行锁

    2024-07-11 10:42:02       30 阅读
  5. 编程什么好用:深入剖析编程工具的选择与运用

    2024-07-11 10:42:02       27 阅读
  6. C++引用和指针的区别

    2024-07-11 10:42:02       24 阅读
  7. 3.数组基础

    2024-07-11 10:42:02       21 阅读
  8. Docker 日志丢失 - 解决方案

    2024-07-11 10:42:02       23 阅读
  9. 3D Web开发新篇章:threelab探索之旅

    2024-07-11 10:42:02       22 阅读
  10. 外科休克病人的护理

    2024-07-11 10:42:02       26 阅读