数学建模(熵权法 python代码 例子)

目录

介绍: 

模板:

例子:择偶

极小型指标转化为极大型(正向化):

中间型指标转为极大型(正向化):

区间型指标转为极大型(正向化):

标准化处理:

公式:

熵权:

公式:

​​​完整代码:

结果:

介绍: 

熵权法是一种多属性决策方法,用于确定各个属性在决策中的重要程度。该方法的核心思想是通过计算属性的熵值,来评估属性的信息量和不确定性,进而确定属性的权重。

熵是信息论中的概念,表示一个随机变量的不确定性。在决策中,一个属性的熵越大,说明该属性对决策的贡献越大,因为它包含了更多的信息。熵权法通过计算属性的熵,然后将每个属性的熵除以总的熵,得到每个属性的权重。

具体步骤如下:

  1. 收集决策所涉及的属性数据。
  2. 计算每个属性的熵值,使用熵的计算公式:熵 = -Σ(p*log2(p)),其中p表示属性的概率。
  3. 计算所有属性的熵之和,得到总的熵。
  4. 计算每个属性的权重,使用该属性的熵除以总的熵。
  5. 最后可以根据属性的权重,进行决策或排序。

熵权法在多属性决策中具有一定的优势,能够考虑到不同属性的权重,提高决策的准确性和可靠性。但是,在实际应用中,需要注意属性数据的准确性和合理性,以及熵的计算方法的选择等问题。

 模板:

import numpy as np

# 定义计算熵的函数
def entropy(data):
    # 计算每个属性的概率
    prob = np.array(data) / np.sum(data)
    # 计算熵
    entropy = -np.sum(prob * np.log2(prob))
    return entropy

# 定义熵权法函数
def entropy_weight(data):
    # 计算每个属性的熵
    entropies = [entropy(column) for column in data.T]
    # 计算总的熵
    total_entropy = np.sum(entropies)
    # 计算每个属性的权重
    weights = [entropy / total_entropy for entropy in entropies]
    return weights

# 示例数据
data = np.array([[10, 20, 30, 40], [40, 30, 20, 10]])

# 计算权重
weights = entropy_weight(data)
print("属性权重:", weights)

例子:择偶

 极小型指标转化为极大型(正向化):

   # 公式:max-x 
   if ('Negative' in name) == True:
            max0 = data_nor[columns_name[i + 1]].max()#取最大值
            data_nor[columns_name[i + 1]] = (max0 - data_nor[columns_name[i + 1]])  # 正向化
            # print(data_nor[columns_name[i+1]])

 中间型指标转为极大型(正向化):

 # 中间型指标正向化 公式:M=max{|xi-best|}  xi=1-|xi-best|/M
        if ('Moderate' in name) == True:
            print("输入最佳值:")
            max = data_nor[columns_name[i + 1]].max()
            min = data_nor[columns_name[i + 1]].min()
            best=input()
            M=0
            for j in data_nor[columns_name[i + 1]]:
                if(M<abs(j-int(best))):
                    M=(abs(j-int(best)))

            data_nor[columns_name[i + 1]]=1-(abs(data_nor[columns_name[i + 1]]-int(best))/M)
            #print(data_nor[columns_name[i + 1]])
            

 区间型指标转为极大型(正向化):

# 区间型指标正向化
        if('Section' in name)==True:
            print()
            print("输入区间:")
            a=input()
            b=input()
            a=int(a)
            b=int(b)
            max = data_nor[columns_name[i + 1]].max()
            min= data_nor[columns_name[i + 1]].min()
            if(a-min>max-b):
                M=a-min
            else:
                M=max-b
            #print(data_nor[columns_name[i + 1]][0])
            cnt=0
            for j in data_nor[columns_name[i + 1]]:
                if(j<int(a)):
                    data_nor[columns_name[i + 1]][cnt]=1-(a-j)/M
                elif (int(a)<= j <=int(b)):
                    data_nor[columns_name[i + 1]][cnt]=1
                elif (j>b):
                    data_nor[columns_name[i + 1]][cnt]=1-(j-b)/M
                #print(data_nor[columns_name[i + 1]][cnt])
                cnt+=1
            #print(data_nor[columns_name[i + 1]])
           
'''公式:
M = max{a-min{xi},max{xi}-b}  xi<a,则xi=1-(a-xi)/M; a<=xi<=b,则xi=1; xi>b,则1-(xi-b)/M
'''

标准化处理:

公式:

def normalization(data_nor):
    data_nors = data_nor.values
    data_nors = np.delete(data_nors, 0, axis=1)#去掉第一行
    squere_A = data_nors * data_nors#矩阵相乘
    # print(squere_A)
    sum_A = np.sum(squere_A, axis=0)#按列求和

    sum_A = sum_A.astype(float)

    stand_A = np.sqrt(sum_A)#平方根
    
    columns_name = data_nor.columns.values
    
    cnt=0
    for i in columns_name[1:]:
        #print(data_nor[i])
        data_nor[i]=data_nor[i]/stand_A[cnt]
        cnt+=1

    #print(data_nor)

    return data_nor

熵权:

公式:

# 定义计算熵权方法
def entropy_weight(data_nor):
    columns_name = data_nor.columns.values
    n = data_nor.shape[0]
    E = []
    for i in columns_name[1:]:
        # 计算信息熵
        # print(i)
        data_nor[i] = data_nor[i] / sum(data_nor[i])

        data_nor[i] = data_nor[i] * np.log(data_nor[i])
        data_nor[i] = data_nor[i].where(data_nor[i].notnull(), 0)
        # print(data_nor[i])
        Ei = (-1) / (np.log(n)) * sum(data_nor[i])
        E.append(Ei)
    # print(E)
    # 计算权重
    W = []
    for i in E:
        wi = (1 - i) / ((len(columns_name) - 1) - sum(E))
        W.append(wi)
    # print(W)
    return W

 ​​​​完整代码:

#coding=gbk
import pandas as pd
import numpy as np
import re
import warnings

# 定义文件读取方法
def read_data(file):
    file_path = file
    raw_data = pd.read_excel(file_path, header=0)
    # print(raw_data)
    return raw_data

# 定义数据正向化
def data_normalization(data):
    data_nor = data.copy()
    columns_name = data_nor.columns.values
    #print(columns_name)
    for i in range((len(columns_name) - 1)):
        name = columns_name[i + 1]
        print("输入这一类数据类型(Positive、Negative、Moderate、Section:)")
        name=input()

        # 极小型指标正向化
        if ('Negative' in name) == True:
            max0 = data_nor[columns_name[i + 1]].max()#取最大值
            data_nor[columns_name[i + 1]] = (max0 - data_nor[columns_name[i + 1]])  # 正向化
            # print(data_nor[columns_name[i+1]])

        # 中间型指标正向化
        if ('Moderate' in name) == True:
            print("输入最佳值:")
            max = data_nor[columns_name[i + 1]].max()#取最大值
            min = data_nor[columns_name[i + 1]].min()#取最小值
            best=input()
            M=0
            for j in data_nor[columns_name[i + 1]]:
                if(M<abs(j-int(best))):
                    M=(abs(j-int(best)))

            data_nor[columns_name[i + 1]]=1-(abs(data_nor[columns_name[i + 1]]-int(best))/M)
            #print(data_nor[columns_name[i + 1]])


        # 区间型指标正向化
        if('Section' in name)==True:
            print("输入区间:")
            a=input()
            b=input()
            a=int(a)
            b=int(b)
            max = data_nor[columns_name[i + 1]].max()
            min= data_nor[columns_name[i + 1]].min()
            if(a-min>max-b):
                M=a-min
            else:
                M=max-b
            #print(data_nor[columns_name[i + 1]][0])
            cnt=0
            for j in data_nor[columns_name[i + 1]]:
                if(j<int(a)):
                    data_nor[columns_name[i + 1]][cnt]=1-(a-j)/M
                elif (int(a)<= j <=int(b)):
                    data_nor[columns_name[i + 1]][cnt]=1
                elif (j>b):
                    data_nor[columns_name[i + 1]][cnt]=1-(j-b)/M
                cnt+=1
            #print(data_nor[columns_name[i + 1]])

    # print(data_nor)
    return data_nor


def normalization(data_nor):
    data_nors = data_nor.values
    data_nors = np.delete(data_nors, 0, axis=1)
    squere_A = data_nors * data_nors#矩阵相乘
    # print(squere_A)
    sum_A = np.sum(squere_A, axis=0)#按列求和

    sum_A = sum_A.astype(float)

    stand_A = np.sqrt(sum_A)#开平方

    columns_name = data_nor.columns.values

    cnt=0
    for i in columns_name[1:]:
        data_nor[i]=data_nor[i]/stand_A[cnt]#每个元素除以相对应的平方根
        cnt+=1

    #print(data_nor)
    return data_nor


# 定义计算熵权方法
def entropy_weight(data_nor):
    columns_name = data_nor.columns.values
    n = data_nor.shape[0]
    E = []
    for i in columns_name[1:]:
        # 计算信息熵
        # print(i)
        data_nor[i] = data_nor[i] / sum(data_nor[i])

        data_nor[i] = data_nor[i] * np.log(data_nor[i])
        data_nor[i] = data_nor[i].where(data_nor[i].notnull(), 0)
        # print(data_nor[i])
        Ei = (-1) / (np.log(n)) * sum(data_nor[i])
        E.append(Ei)
    # print(E)
    # 计算权重
    W = []
    for i in E:
        wi = (1 - i) / ((len(columns_name) - 1) - sum(E))
        W.append(wi)
    # print(W)
    return W


# 计算得分
def entropy_score(data, w):
    data_s = data.copy()
    columns_name = data_s.columns.values
    for i in range((len(columns_name) - 1)):
        name = columns_name[i + 1]
        data_s[name] = data_s[name] * w[i]
    return data_s

if __name__ == "__main__":
     file = 'filepath'  # 声明数据文件地址
     data = read_data(file)  # 读取数据文件
     data_nor = data_normalization(data)  # 数据正向化,生成后的数据data_nor

     print("\n正向化后的数据:")
     print(data_nor)
     data_nor=normalization(data_nor)
     print("\n标准化后的数据:")
     print(data_nor)
     W = entropy_weight(data_nor)  # 计算熵权权重

     data_s = entropy_score(data, W)  # 计算赋权后的得分,使用原数据计算
     #data_nor_s = entropy_score(data_nor, W)

     print("\n权值:",W)
     print("\n赋权后的得分:")
     print(data_s)
     #print(data_nor_s)

结果: 

 

相关推荐

  1. 数学(Topsis python代码 案例)

    2024-03-21 12:16:02       21 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-03-21 12:16:02       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-03-21 12:16:02       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-03-21 12:16:02       18 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-03-21 12:16:02       20 阅读

热门阅读

  1. 前端学习资源整合

    2024-03-21 12:16:02       19 阅读
  2. PPO:推动语言模型对齐的关键技术

    2024-03-21 12:16:02       17 阅读
  3. 大型语言模型面临的漏洞和安全威胁

    2024-03-21 12:16:02       18 阅读
  4. 大语言模型无代码构建知识图谱+视频链接

    2024-03-21 12:16:02       18 阅读
  5. Spring MVC面试简答题

    2024-03-21 12:16:02       23 阅读
  6. ChatGPT:智能论文写作指南,让您成为写作高手

    2024-03-21 12:16:02       22 阅读
  7. 程序策划对于软件开发的成功有多重要?

    2024-03-21 12:16:02       19 阅读