应力平衡方程的推导

应力平衡方程的推导

在这里插入图片描述

对于一点,已知其应力状态有:

σ x , τ x y , τ x z \sigma_x,\tau_{xy},\tau_{xz} σx,τxy,τxz

则其附近点的应力状态为:
σ x + ∂ σ x ∂ x d x , τ x y + ∂ τ x y ∂ x d x , τ x z + ∂ τ x z ∂ x d x \sigma_x+\frac{\partial \sigma_{x}}{\partial x}dx,\tau_{xy}+\frac{\partial \tau_{xy}}{\partial x}dx,\tau_{xz}+\frac{\partial \tau_{xz}}{\partial x}dx σx+xσxdx,τxy+xτxydx,τxz+xτxzdx

之所以如此的原因:
在这里插入图片描述
对于附近的一点:
Δ y + d y d x Δ x \Delta y+\frac{dy}{dx} \Delta x Δy+dxdyΔx
也可由泰勒公式的二阶导知道:

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + o n ( x − x 0 ) f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+o^n(x-x_0) f(x)=f(x0)+1!f(x0)(xx0)+on(xx0)

于是乎,x方向上的面积为 d y d z dydz dydz

根据外力平衡得:

σ x d y d z + τ x y d x d z + τ x z d x d y = ( σ x + ∂ σ x ∂ x d x ) d y d z + ( τ x y + ∂ τ x y ∂ x d x ) d x d z + ( τ x z + ∂ τ x z ∂ x d x ) d x d y \sigma_xdydz+\tau_{xy}dxdz+\tau_{xz}dxdy=(\sigma_x+\frac{\partial \sigma_{x}}{\partial x}dx)dydz+(\tau_{xy}+\frac{\partial \tau_{xy}}{\partial x}dx)dxdz+(\tau_{xz}+\frac{\partial \tau_{xz}}{\partial x}dx)dxdy σxdydz+τxydxdz+τxzdxdy=(σx+xσxdx)dydz+(τxy+xτxydx)dxdz+(τxz+xτxzdx)dxdy

化简得:
∂ σ x ∂ x d x d y d z + ∂ τ x y ∂ y d y d x d z + ∂ τ x z ∂ z d z d x d y = 0 \frac{\partial \sigma_{x}}{\partial x}dxdydz+\frac{\partial \tau_{xy}}{\partial y}dydxdz+\frac{\partial \tau_{xz}}{\partial z}dzdxdy=0 xσxdxdydz+yτxydydxdz+zτxzdzdxdy=0

∂ σ y ∂ y d x d y d z + ∂ τ y x ∂ x d y d x d z + ∂ τ y z ∂ z d z d x d y = 0 \frac{\partial \sigma_{y}}{\partial y}dxdydz+\frac{\partial \tau_{yx}}{\partial x}dydxdz+\frac{\partial \tau_{yz}}{\partial z}dzdxdy=0 yσydxdydz+xτyxdydxdz+zτyzdzdxdy=0

∂ σ z ∂ z d x d y d z + ∂ τ x z ∂ x d y d x d z + ∂ τ y z ∂ x d z d x d y = 0 \frac{\partial \sigma_{z}}{\partial z}dxdydz+\frac{\partial \tau_{xz}}{\partial x}dydxdz+\frac{\partial \tau_{yz}}{\partial x}dzdxdy=0 zσzdxdydz+xτxzdydxdz+xτyzdzdxdy=0

其中: d x d y d z dxdydz dxdydz可以约掉。

当有外力作用 F F F时,(这个外力是作用于微元体上的外力),其分量在三个方向上满足:
∂ σ x ∂ x + ∂ τ x y ∂ y + ∂ τ x z ∂ z + F x = 0 \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{xy}}{\partial y}+\frac{\partial \tau_{xz}}{\partial z}+F_x=0 xσx+yτxy+zτxz+Fx=0

∂ σ y ∂ y + ∂ τ y x ∂ x + ∂ τ y z ∂ z + F y = 0 \frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{yx}}{\partial x}+\frac{\partial \tau_{yz}}{\partial z}+F_y=0 yσy+xτyx+zτyz+Fy=0

∂ σ z ∂ z + ∂ τ x z ∂ x + ∂ τ y z ∂ x + F z = 0 \frac{\partial \sigma_{z}}{\partial z}+\frac{\partial \tau_{xz}}{\partial x}+\frac{\partial \tau_{yz}}{\partial x}+F_z=0 zσz+xτxz+xτyz+Fz=0

当考虑时间变化时,在 x , y , z x,y,z x,y,z三个方向上的位移 u , v , w u,v,w u,v,w时:

∂ σ x ∂ x + ∂ τ x y ∂ y + ∂ τ x z ∂ z = ρ ∂ 2 u ∂ t 2 \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{xy}}{\partial y}+\frac{\partial \tau_{xz}}{\partial z}=\rho \frac{\partial^2 u}{\partial t^2} xσx+yτxy+zτxz=ρt22u

∂ σ y ∂ y + ∂ τ y x ∂ x + ∂ τ y z ∂ z = ρ ∂ 2 v ∂ t 2 \frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{yx}}{\partial x}+\frac{\partial \tau_{yz}}{\partial z}=\rho \frac{\partial^2 v}{\partial t^2} yσy+xτyx+zτyz=ρt22v

∂ σ z ∂ z + ∂ τ x z ∂ x + ∂ τ y z ∂ x = ρ ∂ 2 w ∂ t 2 \frac{\partial \sigma_{z}}{\partial z}+\frac{\partial \tau_{xz}}{\partial x}+\frac{\partial \tau_{yz}}{\partial x}=\rho \frac{\partial^2 w}{\partial t^2} zσz+xτxz+xτyz=ρt22w

相关推荐

  1. 泰勒展开推导应用

    2024-07-14 15:42:01       22 阅读
  2. 32、卷积参数 - 长宽方向公式推导

    2024-07-14 15:42:01       54 阅读
  3. 错排公式推导应用

    2024-07-14 15:42:01       102 阅读
  4. Python在生物信息学中应用:列表推导

    2024-07-14 15:42:01       45 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-14 15:42:01       67 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-14 15:42:01       71 阅读
  3. 在Django里面运行非项目文件

    2024-07-14 15:42:01       58 阅读
  4. Python语言-面向对象

    2024-07-14 15:42:01       69 阅读

热门阅读

  1. 【前端】css控制背景图片缩放

    2024-07-14 15:42:01       24 阅读
  2. Leetcode【最长回文子串】

    2024-07-14 15:42:01       20 阅读
  3. Matlab中产生高斯白噪声信号的方法和其功率计算

    2024-07-14 15:42:01       28 阅读
  4. 大模型日报 2024-07-12

    2024-07-14 15:42:01       24 阅读
  5. 代码随想录刷题day10

    2024-07-14 15:42:01       23 阅读
  6. Rust编程-I/O

    2024-07-14 15:42:01       17 阅读