STM32存储左右互搏 SDIO总线FATS文件读写SD/MicroSD/TF卡

STM32存储左右互搏 SDIO总线FATS文件读写SD/MicroSD/TF卡

SD/MicroSD/TF卡是基于FLASH的一种常见非易失存储单元,由接口协议电路和FLASH构成。市面上由不同尺寸和不同容量的卡,手机领域用的TF卡实际就是MicroSD卡,尺寸比SD卡小,而电路和协议操作则是一样。这里介绍STM32CUBEIDE开发平台HAL库SDIO总线FATS文件操作读写SD/MicroSD/TF卡的例程。

SD/MicroSD/TF卡访问接口

SD/MicroSD/TF卡可以通过访问更快的SDIO专用协议接口或是访问慢一些的普通SPI接口进行操作,两种协议接口复用管脚。通过SDIO访问的接口连接方式如下:
在这里插入图片描述
其中CMD连接用于指示发送的是命令还是数据。CLK提供访问同步时钟,4根数据线(DATA0 ~ DATA3 )则实现信息双向传输。
SDIO可以操作在1bit数据线和4bit数据线模式,因为4bit数据线明显效率高于1bit数据线模式,所以1bit数据线模式很少用,只有在某种极限节省连接资源的情况下可以用1bit数据线模式,在1bit模式下,数据线DATA0用来传输数据,DATA1用作中断。在4bit数据线模式下,数据线DATA0~DATA3用于传输数据,其中DATA1复用作中断线。

例程采用STM32F103VET6芯片对4GB的TF卡进行操作,TF卡也可以插入转换卡套插入SD卡接口。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置SDIO接口,时钟分频到1MHz,根据实际接线信号质量情况可调整提高工作频率:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
配置使用DMA, 优先级可以根据需要调整:
在这里插入图片描述
配置FATS参数:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
需要指定用于识别卡在位的输入管脚,如果硬件上并没有连接,就设定一个下拉的输入管脚并选择即可。
在这里插入图片描述
在这里插入图片描述
配置UART1作为控制和打印输出接口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

对SD/MicroSD/TF卡的SDIO接口FATS操作可以调用HAL库函数进行,代码实现在main.c文件里,实现如下功能:

  1. 串口收到0x01指令,装载SD/MicroSD/TF卡
  2. 串口收到0x02指令,创建/打开文件并从头位置写入数据
  3. 串口收到0x03指令,打开文件并从头位置读入数据
  4. 串口收到0x04指令,创建/打开文件并从设定位置写入数据
  5. 串口收到0x05指令,打开文件并从设定位置读入数据

完整的main.c代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2022
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "ctype.h"
#include "string.h"

#include "usart.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SD_HandleTypeDef hsd;
DMA_HandleTypeDef hdma_sdio;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_SDIO_SD_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t uart1_rxd[256];
uint8_t uart1_txd[256];
uint8_t cmd;
uint8_t disk_mount_status = 0;

FIL file;
UINT bytesread;
UINT byteswritten;
uint8_t rBuffer[20];      //Buffer for read
uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write

extern char SDPath[4];
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	FRESULT retSD;
	disk_mount_status = 0;

	char * dpath = "0:"; //Disk Path
	for(uint8_t i=0; i<4; i++)
	{
		SDPath[i] = *(dpath+i);
	}

	uint32_t SD_Read_Size;
	const TCHAR* filepath = "0:test.txt";
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_SDIO_SD_Init();
  MX_USART1_UART_Init();
  MX_FATFS_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, uart1_rxd, 1);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  if(cmd==0x01) //Mount SD
	  {
		  cmd = 0;

          if(disk_mount_status==1) printf("\r\nSD mounted already\r\n");
          else
          {

        	  retSD = f_mount(&SDFatFS,(TCHAR const*)SDPath,1); //SD mount

        	  if(retSD==FR_NO_FILESYSTEM)
        	  {
        		printf("\r\nFile system doesn't exist. Now to format......\r\n");
      			retSD = f_mkfs((TCHAR const*)SDPath,0,0); //SD format
      			if(retSD != FR_OK )
      			{
      				printf("\r\nFormat error: %d\r\n",retSD);
      			}
      			else
      			{
      				printf("\r\nFormat OK\r\n");

      			}
        	   }
      		   else if(retSD==FR_OK)
      		   {
      			    disk_mount_status = 1;
      			    printf("\r\nSD mount successful\r\n");

      			}
      			else
      			{
      				printf("\r\nSD mount error: %d\r\n",retSD);
      			}
        	  }
        }
	    else if(cmd==2) //File creation and write
	    {
		  cmd = 0;

		  if(disk_mount_status==0) printf("\r\nSD not mounted: %d\r\n",retSD);
		  else
		  {
				retSD = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE );  //Open or create file
				if(retSD == FR_OK)
				{
					printf("\r\nFile open or creation successful\r\n");
					__disable_irq();
					retSD = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write data
					__enable_irq();
					if(retSD == FR_OK)
					{
						printf("\r\nFile write successful\r\n");

					}
					else
					{
						printf("\r\nFile write error: %d\r\n",retSD);
					}

					f_close(&file);   //Close file
				}
				else
				{
					printf("\r\nFile open or creation error %d\r\n",retSD);
				}
		   }

	    }
	    else if(cmd==3) //File read
	    {
		  cmd = 0;

		  if(disk_mount_status==0) printf("\r\nSD not mounted: %d\r\n",retSD);
		  else
		  {
				retSD = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
				if(retSD == FR_OK)
				{
					printf("\r\nFile open successful\r\n");
					retSD = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read data
					if(retSD == FR_OK)
					{
						printf("\r\nFile read successful\r\n");
						PY_Delay_us_t(200000);

						SD_Read_Size = sizeof(rBuffer);
						for(uint16_t i = 0;i < SD_Read_Size;i++)
						{
							printf("%d ", rBuffer[i]);
						}
						printf("\r\n");

					}
					else
					{
						printf("\r\nFile read error: %d\r\n", retSD);
					}
					f_close(&file); //Close file
				}
				else
				{
					printf("\r\nFile open error: %d\r\n", retSD);
				}
		  }

	    }
	    else if(cmd==4) //File locating write
	    {
		  cmd = 0;

		  if(disk_mount_status==0) printf("\r\nSD not mounted: %d\r\n",retSD);
		  else
		  {
				retSD = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE);  //Open or create file
				if(retSD == FR_OK)
				{
					printf("\r\nFile open or creation successful\r\n");

					retSD=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locating

					if(retSD == FR_OK)
					{
						__disable_irq();
						retSD = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);
						__enable_irq();

						if(retSD == FR_OK)
						{
							printf("\r\nFile locating write successful\r\n");
						}
						else
						{
							printf("\r\nFile locating write error: %d\r\n", retSD);
						}

					}
					else
					{
						printf("\r\nFile pointer error: %d\r\n",retSD);
					}

					f_close(&file);   //Close file
				}
				else
				{
					printf("\r\nFile open or creation error %d\r\n",retSD);
				}
		  }
	    }
	    else if(cmd==5) //File locating read
	    {
		  cmd = 0;

		  if(disk_mount_status==0) printf("\r\nSD not mounted: %d\r\n",retSD);
		  else
		  {
				retSD = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
				if(retSD == FR_OK)
				{
					printf("\r\nFile open successful\r\n");

					retSD =  f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locating

					if(retSD == FR_OK)
					{
						retSD = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);
						if(retSD == FR_OK)
						{
							printf("\r\nFile locating read successful\r\n");
							PY_Delay_us_t(200000);

							SD_Read_Size = sizeof(rBuffer);
							for(uint16_t i = 0;i < SD_Read_Size;i++)
							{
								printf("%d ",rBuffer[i]);
							}
							printf("\r\n");
						}
						else
						{
							printf("\r\nFile locating read error: %d\r\n",retSD);
						}
					}
					else
					{
						printf("\r\nFile pointer error: %d\r\n",retSD);
					}
					f_close(&file);
				}
				else
				{
					printf("\r\nFile open error: %d\r\n",retSD);
				}
		  }
	    }
	    else;
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SDIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_SDIO_SD_Init(void)
{

  /* USER CODE BEGIN SDIO_Init 0 */

  /* USER CODE END SDIO_Init 0 */

  /* USER CODE BEGIN SDIO_Init 1 */

  /* USER CODE END SDIO_Init 1 */
  hsd.Instance = SDIO;
  hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
  hsd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
  hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
  hsd.Init.BusWide = SDIO_BUS_WIDE_1B;
  hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_ENABLE;
  hsd.Init.ClockDiv = 71;
  /* USER CODE BEGIN SDIO_Init 2 */

  /* USER CODE END SDIO_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA2_Channel4_5_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Channel4_5_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin : PA8 */
  GPIO_InitStruct.Pin = GPIO_PIN_8;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLDOWN;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
  if(huart==&huart1)
  {
	  cmd = uart1_rxd[0];
	  HAL_UART_Receive_IT(&huart1, uart1_rxd, 1);
  }
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */


STM32例程测试

串口指令0x01测试效果如下:
在这里插入图片描述

串口指令0x02测试效果如下:
在这里插入图片描述
串口指令0x03测试效果如下:
在这里插入图片描述
串口指令0x04测试效果如下:
在这里插入图片描述
串口指令0x05测试效果如下:
在这里插入图片描述

注意事项

对于STM32F4等系列,在进行卡装载(mount)操作时,需要切换为单线模式进行,否则会错误,进行数据写读前再切换为4线模式。

STM32例程下载

STM32F103VET6 SDIO总线FATS文件读写SD/MicroSD/TF卡例程下载

STM32F401RCT6 SDIO总线FATS文件读写SD/MicroSD/TF卡例程下载

–End–

相关推荐

最近更新

  1. TCP协议是安全的吗?

    2024-04-26 19:06:02       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-04-26 19:06:02       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-04-26 19:06:02       19 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-04-26 19:06:02       20 阅读

热门阅读

  1. 1.mysql--常用sql(2)

    2024-04-26 19:06:02       10 阅读
  2. 【C++刷题】优选算法——动态规划第五辑

    2024-04-26 19:06:02       14 阅读
  3. leetcode2418.按身高排序

    2024-04-26 19:06:02       9 阅读
  4. 虚拟机部署openeuler网络配置

    2024-04-26 19:06:02       17 阅读
  5. npm install CERT_HAS_EXPIRED解决方法

    2024-04-26 19:06:02       15 阅读
  6. BootLooder引导传参和镜像编译

    2024-04-26 19:06:02       15 阅读