Ray框架解析,轻松入门Python分布式机器学习

大家好,在现代科技发展的背景下,机器学习任务对分布式计算的依赖日益加深。这些任务包括网络训练、超参数调优、模型部署和数据处理等,都对计算资源有着巨大的需求。缺乏集群计算支持,会导致这些任务处理速度缓慢,严重降低工作效率。

Ray这一分布式计算框架的出现,为解决计算瓶颈提供了有效途径。它专为Python语言设计,并且能够与PyTorch等深度学习库无缝协作,提升机器学习应用的开发速度和部署效率。

本文将介绍Ray生态系统的核心元素以及如何将其与PyTorch配合使用。 

1.Ray简介

图片

Ray是一个开源的Python库,专注于并行和分布式计算。

上图展示了从宏观角度观察,Ray的生态系统主要由三个关键部分组成:

1) Ray系统的核心:提供基础的并行和分布式计算能力

2) 可扩展的机器学习库:包括Ray团队开发的原生库,也包括社区贡献的第三方库。

3) 工具:用于在各种集群环境或云服务上轻松启动和管理集群。

这样的架构设计使Ray能够灵活适应不同的计算需求和环境,为用户提供强大的计算支持。

2.Ray的核心优势

Ray框架能够让Python应用程序在多个CPU核心或计算机上并行运行,显著提高了处理速度和计算效率。以下是Ray的主要优势:

  • 简单性:不用重构代码,即可实现扩展Python应用程序,无论是在单机还是多台机器环境。

  • 稳健性:即便面临硬件故障或任务抢占,应用仍能稳定运行,不受影响。

  • 高性能:任务执行延迟低至毫秒级,可以扩展到数万个核心,同时在处理数值数据时保持低序列化开销。

3.库生态系统

由于Ray框架具有通用性,开发者社区已在其基础上开发出众多库和工具,用以应对各种不同的计算任务。这些库大多数都能与PyTorch兼容,且对原有代码的改动极小,实现了各个库之间的无缝集成。以下是Ray生态系统中众多库的若干示例。

3.1 RaySGD

图片

PyTorch的DataParallel与Ray在p3dn.24xlarge实例上的比较

RaySGD是一个专为数据并行训练提供分布式训练封装工具的库,旨在简化并加速训练流程。例如,RaySGD TorchTrainer是围绕torch.distributed.launch的封装器,通过提供Python API,可以将分布式训练集成到更广泛的Python应用中。这样一来,开发者无需将训练代码嵌入到复杂的bash脚本里,便能实现训练的分布式运行。

此外,RaySGD库还具备以下优势:

  • 易用性:无需密切监控各个计算节点,即可扩展PyTorch的DistributedDataParallel。

  • 可扩展性:支持从单一CPU到多节点、多CPU和多GPU集群的灵活扩展,仅需简单修改几行代码。

  • 加速训练:内置支持使用NVIDIA Apex进行混合精度训练。

  • 容错性:当云计算资源被抢占时,能够自动进行恢复。

  • 兼容性:与其他库如Ray Tune和Ray Serve无缝集成。

可以通过安装Ray(pip install -U ray torch)并运行以下代码来开始使用TorchTrainer:

import torch
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
import torchvision.transforms as transforms

import ray
from ray.util.sgd.torch import TorchTrainer
from ray.util.sgd.torch import TrainingOperator
# https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
from ray.util.sgd.torch.resnet import ResNet18

def cifar_creator(config):
    """Returns dataloaders to be used in `train` and `validate`."""
    tfms = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465),
                             (0.2023, 0.1994, 0.2010)),
    ])  # 均值和标准差的转换
    train_loader = DataLoader(
        CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])
    validation_loader = DataLoader(
        CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])
    return train_loader, validation_loader

def optimizer_creator(model, config):
    """Returns an optimizer (or multiple)"""
    return torch.optim.SGD(model.parameters(), lr=config["lr"])

CustomTrainingOperator = TrainingOperator.from_creators(
    model_creator=ResNet18, # 返回nn.Module的函数
    optimizer_creator=optimizer_creator, # 返回优化器的函数
    data_creator=cifar_creator, # 返回数据加载器的函数
    loss_creator=torch.nn.CrossEntropyLoss  # 损失函数
    )

ray.init()

trainer = TorchTrainer(
    training_operator_cls=CustomTrainingOperator,
    config={"lr": 0.01, # 用于optimizer_creator
            "batch": 64 # 用于data_creator
           },
    num_workers=2,  # 并行化的程度
    use_gpu=torch.cuda.is_available(),
    use_tqdm=True)

stats = trainer.train()
print(trainer.validate())

torch.save(trainer.state_dict(), "checkpoint.pt")
trainer.shutdown()
print("success!")

该脚本将下载CIFAR-10数据集,并使用ResNet-18模型进行图像分类。通过改变一个参数(num_workers=N),可以利用多个GPU来加速训练过程。

3.2 Ray Tune

图片

Ray Tune实现了诸如Population Based Training(如上图所示)等优化算法,这些算法可以与PyTorch一起使用,以构建性能更优的模型。

Ray Tune是一个用于实验执行并进行超参数优化的Python库,适用于不同规模的项目。该库的一些优点包括:

  • 能够在不到10行代码的情况下,即可开展多节点的分布式超参数搜索。

  • 兼容所有主流的机器学习框架,包括PyTorch。

  • 提供对GPU的直接支持,优化计算效率。

  • 自动进行模型检查点的保存,并支持将训练过程记录到TensorBoard,方便追踪和可视化。

可以通过安装Ray(pip install ray torch torchvision)并运行以下代码来开始使用Ray Tune。

import numpy as np
import torch
import torch.optim as optim

from ray import tune
from ray.tune.examples.mnist_pytorch import get_data_loaders, train, test
import ray
import sys

if len(sys.argv) > 1:
    ray.init(redis_address=sys.argv[1])

import torch.nn as nn
import torch.nn.functional as F

class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 3, kernel_size=3)
        self.fc = nn.Linear(192, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 3))
        x = x.view(-1, 192)
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


def train_mnist(config):
    model = ConvNet()
    train_loader, test_loader = get_data_loaders()
    optimizer = optim.SGD(
        model.parameters(), lr=config["lr"], momentum=config["momentum"])
    for i in range(10):
        train(model, optimizer, train_loader, torch.device("cpu"))
        acc = test(model, test_loader, torch.device("cpu"))
        tune.track.log(mean_accuracy=acc)
        if i % 5 == 0:
            # 这会将模型保存到试验目录中
            torch.save(model.state_dict(), "./model.pth")

from ray.tune.schedulers import ASHAScheduler

search_space = {
    "lr": tune.choice([0.001, 0.01, 0.1]),
    "momentum": tune.uniform(0.1, 0.9)
}

analysis = tune.run(
    train_mnist,
    num_samples=30,
    scheduler=ASHAScheduler(metric="mean_accuracy", mode="max", grace_period=1),
    config=search_space)

3.3 Ray Serve

图片

Ray Serve不仅可以单独用于部署模型,还可以用来扩展其他服务工具,比如FastAPI。

Ray Serve是个易于使用的可扩展模型服务库,该库的一些优点包括:

  • 能够通过统一的工具集处理和服务各类模型,包括但不限于深度学习模型(如PyTorch、TensorFlow)以及scikit-learn模型,同时也支持任意Python业务逻辑的部署。

  • 具备跨多台机器扩展服务的能力,无论这些机器位于本地数据中心还是云环境中。

  • 与许多其他库如Ray Tune和FastAPI等具有良好的兼容性。

3.4 RLlib

图片

RLlib提供了定制训练几乎各个方面的方法,包括神经网络模型、动作分布、策略定义、环境以及样本收集过程。

RLlib是个强化学习库,提供了高度可扩展性和统一的API,适用于各种应用场景。一些优势包括:

  • 原生兼容多个深度学习框架,包括PyTorch、TensorFlow Eager模式以及TensorFlow的1.x和2.x版本。

  • 支持多种强化学习算法,如模型无关的算法、基于模型的算法、进化算法、规划算法以及多智能体算法。

  • 通过简单的配置和自动封装机制,轻松实现复杂模型结构的构建,例如注意力网络和LSTM堆栈。

3.5 Cluster Launcher(集群启动器)

图片

Ray集群启动器简化了在任何集群或云服务提供商上启动和扩展的过程。

当开发者在笔记本电脑上开发完应用程序,并打算将其部署到云端以处理更大规模的数据或利用更多的GPU资源时,接下来的部署步骤可能会显得有些复杂。通常,可以选择让基础设施团队来协助配置,或者自己手动完成以下操作:

  1. 选择一个云服务提供商,如AWS、GCP或Azure。

  2. 通过管理控制台配置实例类型、安全组、竞价价格、实例限制等参数。

  3. 确定如何在集群中部署和运行您的Python脚本。

为了简化这一过程,可以使用Ray集群启动器,它能够在任何云服务提供商或集群环境中快速启动和扩展计算资源。Ray集群启动器支持自动扩缩容、文件同步、脚本提交和端口映射等功能,让开发者能够在Kubernetes、AWS、GCP、Azure或私有集群上无缝运行Ray集群,而无需深入了解集群管理的具体细节。

 4.总结

图片

Ray为蚂蚁集团的融合引擎提供了分布式计算基础

综上所述,本文介绍了Ray在PyTorch生态系统中所带来的一系列优势。Ray已经得到了广泛应用,涵盖了从蚂蚁集团使用Ray支持其金融业务,到LinkedIn在Yarn上部署Ray,以及Pathmind将Ray用于将强化学习技术整合到模拟软件中的多个场景。

相关推荐

  1. Python入门轻松学习,编程不再难

    2024-04-11 19:00:03       15 阅读
  2. python入门Flask框架学习(二)

    2024-04-11 19:00:03       37 阅读
  3. python入门Flask框架学习(一)

    2024-04-11 19:00:03       32 阅读
  4. 分布式机器学习

    2024-04-11 19:00:03       11 阅读
  5. 机器学习框架PyTorch

    2024-04-11 19:00:03       33 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-04-11 19:00:03       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-04-11 19:00:03       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-04-11 19:00:03       18 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-04-11 19:00:03       20 阅读

热门阅读

  1. spring事务问题的解决和处理

    2024-04-11 19:00:03       16 阅读
  2. 【数学建模】通过调整飞行角度使飞机顺利飞行

    2024-04-11 19:00:03       22 阅读
  3. MySQL的sql_mode模式简介

    2024-04-11 19:00:03       17 阅读
  4. 小红书12大限流原因

    2024-04-11 19:00:03       17 阅读
  5. Python 爬虫基础:利用 BeautifulSoup 解析网页内容

    2024-04-11 19:00:03       18 阅读
  6. Kolla-ansible部署OpenStack集群

    2024-04-11 19:00:03       13 阅读
  7. 字符串判等 51Nod-3288 2024年4月10日

    2024-04-11 19:00:03       14 阅读
  8. 多叉树题目:王位继承顺序

    2024-04-11 19:00:03       12 阅读
  9. 测试用例的编写方式

    2024-04-11 19:00:03       15 阅读
  10. 【高阶CAD二次开发】文稿

    2024-04-11 19:00:03       15 阅读
  11. 【LeetCode刷题记录】15. 三数之和

    2024-04-11 19:00:03       12 阅读