cs231n作业2 双层神经网络

双层神经网络

在这里插入图片描述
在这里插入图片描述
我们选用ReLU函数和softmax函数:
在这里插入图片描述
步骤:
1、LOSS损失函数(前向传播)与梯度(后向传播)计算

Forward: 计算score,再根据score计算loss
Backward:分别对W2、b2、W1、b1求梯度

def loss(self, X, y=None, reg=0.0):
    # Unpack variables from the params dictionary
    W1, b1 = self.params['W1'], self.params['b1']
    W2, b2 = self.params['W2'], self.params['b2']
    N, D = X.shape

    # Compute the forward pass
    scores = None
    h1 = np.maximum(0, np.dot(X,W1) + b1) #(5,10)
    scores = np.dot(h1,W2) + b2 # (5,3)
    if y is None:
      return scores

    # Compute the loss
    loss = None
    exp_S = np.exp(scores) #(5,3)
    sum_exp_S = np.sum(exp_S,axis = 1) 
    sum_exp_S = sum_exp_S.reshape(-1,1) #(5,1)
    #print (sum_exp_S.shape)
    loss = np.sum(-scores[range(N),list(y)]) + sum(np.log(sum_exp_S))
    loss = loss / N + 0.5 * reg * np.sum(W1 * W1) +  0.5 * reg * np.sum(W2 * W2)
      
    # Backward pass: compute gradients
    grads = {}
    #---------------------------------#
    dscores = np.zeros(scores.shape)
    dscores[range(N),list(y)] = -1
    dscores += (exp_S/sum_exp_S) #(5,3) 
    dscores /= N
    grads['W2'] = np.dot(h1.T, dscores)
    grads['W2'] += reg * W2
    grads['b2'] = np.sum(dscores, axis = 0)
    #---------------------------------#
    dh1 = np.dot(dscores, W2.T)  #(5,10)
    dh1_ReLU = (h1>0) * dh1
    grads['W1'] = X.T.dot(dh1_ReLU) + reg * W1
    grads['b1'] = np.sum(dh1_ReLU, axis = 0)
    #---------------------------------#
      
    return loss, grads

2、训练函数 (迭代过程:forward–>backward–>update–>forward–>backward->update……)

def train(self, X, y, X_val, y_val,
            learning_rate=1e-3, learning_rate_decay=0.95,
            reg=5e-6, num_iters=100,
            batch_size=200, verbose=False):

    num_train = X.shape[0]
    iterations_per_epoch = max(num_train / batch_size, 1)

    # Use SGD to optimize the parameters in self.model
    loss_history = []
    train_acc_history = []
    val_acc_history = []

    for it in xrange(num_iters):
      X_batch = None
      y_batch = None

      mask = np.random.choice(num_train,batch_size,replace = True)
      X_batch = X[mask]
      y_batch = y[mask]

      # Compute loss and gradients using the current minibatch
      loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
      loss_history.append(loss)

      self.params['W1'] += -learning_rate * grads['W1']
      self.params['b1'] += -learning_rate * grads['b1']
      self.params['W2'] += -learning_rate * grads['W2']
      self.params['b2'] += -learning_rate * grads['b2']

      if verbose and it % 100 == 0:
        print('iteration %d / %d: loss %f' % (it, num_iters, loss))

      # Every epoch, check train and val accuracy and decay learning rate.
      if it % iterations_per_epoch == 0:
        # Check accuracy
        #print ('第%d个epoch' %it)
        train_acc = (self.predict(X_batch) == y_batch).mean()
        val_acc = (self.predict(X_val) == y_val).mean()
        train_acc_history.append(train_acc)
        val_acc_history.append(val_acc)

        # Decay learning rate
        learning_rate *= learning_rate_decay #减小学习率

    return {
      'loss_history': loss_history,
      'train_acc_history': train_acc_history,
      'val_acc_history': val_acc_history,
    }

3、预测函数
4、参数训练

用于机器视觉识别的卷积神经网络

多层全连接神经网络

两个基本的layer:

def affine_forward(x, w, b):
  out = None
  N=x.shape[0]
  x_new=x.reshape(N,-1)#转为二维向量
  out=np.dot(x_new,w)+b
  cache = (x, w, b) # 不需要保存out
  return out, cache


def affine_backward(dout, cache):
  x, w, b = cache
  dx, dw, db = None, None, None
  dx=np.dot(dout,w.T)
  dx=np.reshape(dx,x.shape)
  x_new=x.reshape(x.shape[0],-1)
  dw=np.dot(x_new.T,dout) 
  db=np.sum(dout,axis=0,keepdims=True)
 
  return dx, dw, db


def relu_forward(x):
  out = None
  out=np.maximum(0,x)
  cache = x
  return out, cache


def relu_backward(dout, cache):
  dx, x = None, cache
  return dx

构建一个Sandwich的层:

def affine_relu_forward(x, w, b):
  a, fc_cache = affine_forward(x, w, b)
  out, relu_cache = relu_forward(a)
  cache = (fc_cache, relu_cache)
  return out, cache

def affine_relu_backward(dout, cache):
  fc_cache, relu_cache = cache
  da = relu_backward(dout, relu_cache)
  dx, dw, db = affine_backward(da, fc_cache)
  return dx, dw, db

FullyConnectedNet:

class FullyConnectedNet(object):
 
   def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,
                dropout=0, use_batchnorm=False, reg=0.0,
                weight_scale=1e-2, dtype=np.float32, seed=None):
     self.use_batchnorm = use_batchnorm
     self.use_dropout = dropout > 0
     self.reg = reg
     self.num_layers = 1 + len(hidden_dims)
     self.dtype = dtype
     self.params = {}
 
     layers_dims = [input_dim] + hidden_dims + [num_classes] #z这里存储的是每个layer的大小
     for i in xrange(self.num_layers):
         self.params['W' + str(i + 1)] = weight_scale * np.random.randn(layers_dims[i], layers_dims[i + 1])
         self.params['b' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))
         if self.use_batchnorm and i < len(hidden_dims):#最后一层是不需要batchnorm的
             self.params['gamma' + str(i + 1)] = np.ones((1, layers_dims[i + 1]))
             self.params['beta' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))
 
     self.dropout_param = {}
     if self.use_dropout:
             self.dropout_param = {'mode': 'train', 'p': dropout}
     if seed is not None:
         self.dropout_param['seed'] = seed
     

     self.bn_params = []
     if self.use_batchnorm:
             self.bn_params = [{'mode': 'train'} for i in xrange(self.num_layers - 1)]
     
     # Cast all parameters to the correct datatype
     for k, v in self.params.iteritems():
             self.params[k] = v.astype(dtype)
 
 
   def loss(self, X, y=None):

     X = X.astype(self.dtype)
     mode = 'test' if y is None else 'train'
     if self.dropout_param is not None:
             self.dropout_param['mode'] = mode
     if self.use_batchnorm:
             for bn_param in self.bn_params:
                 bn_param[mode] = mode
 
     scores = None

     h, cache1, cache2, cache3,cache4, bn, out = {}, {}, {}, {}, {}, {},{}
     out[0] = X #存储每一层的out,按照逻辑,X就是out0[0]
 
     # Forward pass: compute loss
     for i in xrange(self.num_layers - 1):
         # 得到每一层的参数
         w, b = self.params['W' + str(i + 1)], self.params['b' + str(i + 1)]
         if self.use_batchnorm:
             gamma, beta = self.params['gamma' + str(i + 1)], self.params['beta' + str(i + 1)]
             h[i], cache1[i] = affine_forward(out[i], w, b)
             bn[i], cache2[i] = batchnorm_forward(h[i], gamma, beta, self.bn_params[i])
             out[i + 1], cache3[i] = relu_forward(bn[i])
             if self.use_dropout:
                 out[i+1], cache4[i] = dropout_forward(out[i+1]  , self.dropout_param)
         else:
             out[i + 1], cache3[i] = affine_relu_forward(out[i], w, b)
             if self.use_dropout:
                 out[i + 1], cache4[i] = dropout_forward(out[i + 1], self.dropout_param)
 
     W, b = self.params['W' + str(self.num_layers)], self.params['b' + str(self.num_layers)]
     scores, cache = affine_forward(out[self.num_layers - 1], W, b) #对最后一层进行计算
     if mode == 'test':
       return scores
 
     loss, grads = 0.0, {}
     data_loss, dscores = softmax_loss(scores, y)
     reg_loss = 0
     for i in xrange(self.num_layers):
         reg_loss += 0.5 * self.reg * np.sum(self.params['W' + str(i + 1)] * self.params['W' + str(i + 1)])
     loss = data_loss + reg_loss
 
     # Backward pass: compute gradients
     dout, dbn, dh, ddrop = {}, {}, {}, {}
     t = self.num_layers - 1
     dout[t], grads['W' + str(t + 1)], grads['b' + str(t + 1)] = affine_backward(dscores, cache)#这个cache就是上面得到的
     for i in xrange(t):
         if self.use_batchnorm:
             if self.use_dropout:
                 dout[t - i] = dropout_backward(dout[t-i], cache4[t-1-i])
             dbn[t - 1 - i] = relu_backward(dout[t - i], cache3[t - 1 - i])
             dh[t - 1 - i], grads['gamma' + str(t - i)], grads['beta' + str(t - i)] = batchnorm_backward(dbn[t - 1 - i],cache2[t - 1 - i])
             dout[t - 1 - i], grads['W' + str(t - i)], grads['b' + str(t - i)] = affine_backward(dh[t - 1 - i],cache1[t - 1 - i])
         else:
             if self.use_dropout:
                 dout[t - i] = dropout_backward(dout[t - i], cache4[t - 1 - i])
 
             dout[t - 1 - i], grads['W' + str(t - i)], grads['b' + str(t - i)] = affine_relu_backward(dout[t - i],cache3[t - 1 - i])
     # Add the regularization gradient contribution
     for i in xrange(self.num_layers):
         grads['W' + str(i + 1)] += self.reg * self.params['W' + str(i + 1)]
     return loss, grads

使用slover来对神经网络进优化求解

之后进行参数更新:

  1. SGD
  2. Momentum
  3. Nestero
  4. RMSProp and Adam

批量规范化

在这里插入图片描述

BN层前向传播:
在这里插入图片描述

BN层反向传播:
在这里插入图片描述

def batchnorm_forward(x, gamma, beta, bn_param):
    mode = bn_param['mode']  #因为train和test是两种不同的方法
    eps = bn_param.get('eps', 1e-5)
    momentum = bn_param.get('momentum', 0.9)
    N, D = x.shape
    running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
    running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))

    out, cache = None, None
    if mode == 'train':    
        sample_mean = np.mean(x, axis=0, keepdims=True)       # [1,D]    
        sample_var = np.var(x, axis=0, keepdims=True)         # [1,D] 
        x_normalized = (x - sample_mean) / np.sqrt(sample_var + eps)    # [N,D]    
        out = gamma * x_normalized + beta    
        cache = (x_normalized, gamma, beta, sample_mean, sample_var, x, eps)    
        running_mean = momentum * running_mean + (1 - momentum) * sample_mean    #通过moument得到最终的running_mean和running_var
        running_var = momentum * running_var + (1 - momentum) * sample_var
    elif mode == 'test':    
        x_normalized = (x - running_mean) / np.sqrt(running_var + eps)    #test的时候如何通过BN层
        out = gamma * x_normalized + beta
    else:    
        raise ValueError('Invalid forward batchnorm mode "%s"' % mode)

    # Store the updated running means back into bn_param
    bn_param['running_mean'] = running_mean
    bn_param['running_var'] = running_var

    return out, cache

def batchnorm_backward(dout, cache):
    dx, dgamma, dbeta = None, None, None
    x_normalized, gamma, beta, sample_mean, sample_var, x, eps = cache
    N, D = x.shape
    dx_normalized = dout * gamma       # [N,D]
    x_mu = x - sample_mean             # [N,D]
    sample_std_inv = 1.0 / np.sqrt(sample_var + eps)    # [1,D]
    dsample_var = -0.5 * np.sum(dx_normalized * x_mu, axis=0, keepdims=True) * sample_std_inv**3
    dsample_mean = -1.0 * np.sum(dx_normalized * sample_std_inv, axis=0, keepdims=True) - \                                
                                   2.0 * dsample_var * np.mean(x_mu, axis=0, keepdims=True)
    dx1 = dx_normalized * sample_std_inv
    dx2 = 2.0/N * dsample_var * x_mu
    dx = dx1 + dx2 + 1.0/N * dsample_mean
    dgamma = np.sum(dout * x_normalized, axis=0, keepdims=True)
    dbeta = np.sum(dout, axis=0, keepdims=True)

    return dx, dgamma, dbeta

Batch Normalization解决的一个重要问题就是梯度饱和。

Dropout

训练的时候以一定的概率来去每层的神经元:
在这里插入图片描述
可以防止过拟合。还可以理解为dropout是一个正则化的操作,他在每次训练的时候,强行让一些feature为0,这样提高了网络的稀疏表达能力。

def dropout_forward(x, dropout_param):
    p, mode = dropout_param['p'], dropout_param['mode']
    if 'seed' in dropout_param:  
        np.random.seed(dropout_param['seed'])

    mask = None
    out = None
    if mode == 'train':    
        mask = (np.random.rand(*x.shape) < p) / p    #注意这里除以了一个P,这样在test的输出的时候,维持原样即可
        out = x * mask
    elif mode == 'test':    
        out = x

    cache = (dropout_param, mask)
    out = out.astype(x.dtype, copy=False)

    return out, cache


def dropout_backward(dout, cache):
    dropout_param, mask = cache
    mode = dropout_param['mode']
    dx = None

    if mode == 'train':    
        dx = dout * mask
    elif mode == 'test':    
        dx = dout

    return dx

卷积神经网络

卷积层的前向传播与反向传播
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

def conv_forward_naive(x, w, b, conv_param):
    stride, pad = conv_param['stride'], conv_param['pad']
    N, C, H, W = x.shape
    F, C, HH, WW = w.shape
    x_padded = np.pad(x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), mode='constant') #补零
    H_new = 1 + (H + 2 * pad - HH) / stride
    W_new = 1 + (W + 2 * pad - WW) / stride
    s = stride
    out = np.zeros((N, F, H_new, W_new))

    for i in xrange(N):       # ith image    
        for f in xrange(F):   # fth filter        
            for j in xrange(H_new):            
                for k in xrange(W_new):                
                    out[i, f, j, k] = np.sum(x_padded[i, :, j*s:HH+j*s, k*s:WW+k*s] * w[f]) + b[f]#对应位相乘

    cache = (x, w, b, conv_param)

    return out, cache


def conv_backward_naive(dout, cache):
    x, w, b, conv_param = cache
    pad = conv_param['pad']
    stride = conv_param['stride']
    F, C, HH, WW = w.shape
    N, C, H, W = x.shape
    H_new = 1 + (H + 2 * pad - HH) / stride
    W_new = 1 + (W + 2 * pad - WW) / stride

    dx = np.zeros_like(x)
    dw = np.zeros_like(w)
    db = np.zeros_like(b)

    s = stride
    x_padded = np.pad(x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), 'constant')
    dx_padded = np.pad(dx, ((0, 0), (0, 0), (pad, pad), (pad, pad)), 'constant')

    for i in xrange(N):       # ith image    
        for f in xrange(F):   # fth filter        
            for j in xrange(H_new):            
                for k in xrange(W_new):                
                    window = x_padded[i, :, j*s:HH+j*s, k*s:WW+k*s]
                    db[f] += dout[i, f, j, k]                
                    dw[f] += window * dout[i, f, j, k]                
                    dx_padded[i, :, j*s:HH+j*s, k*s:WW+k*s] += w[f] * dout[i, f, j, k]#上面的式子,关键就在于+号

    # Unpad
    dx = dx_padded[:, :, pad:pad+H, pad:pad+W]

    return dx, dw, db

池化层

def max_pool_forward_naive(x, pool_param):
    HH, WW = pool_param['pool_height'], pool_param['pool_width']
    s = pool_param['stride']
    N, C, H, W = x.shape
    H_new = 1 + (H - HH) / s
    W_new = 1 + (W - WW) / s
    out = np.zeros((N, C, H_new, W_new))
    for i in xrange(N):    
        for j in xrange(C):        
            for k in xrange(H_new):            
                for l in xrange(W_new):                
                    window = x[i, j, k*s:HH+k*s, l*s:WW+l*s] 
                    out[i, j, k, l] = np.max(window)

    cache = (x, pool_param)

    return out, cache


def max_pool_backward_naive(dout, cache):
    x, pool_param = cache
    HH, WW = pool_param['pool_height'], pool_param['pool_width']
    s = pool_param['stride']
    N, C, H, W = x.shape
    H_new = 1 + (H - HH) / s
    W_new = 1 + (W - WW) / s
    dx = np.zeros_like(x)
    for i in xrange(N):    
        for j in xrange(C):        
            for k in xrange(H_new):            
                for l in xrange(W_new):                
                    window = x[i, j, k*s:HH+k*s, l*s:WW+l*s]                
                    m = np.max(window)               #获得之前的那个值,这样下面只要windows==m就能得到相应的位置
                    dx[i, j, k*s:HH+k*s, l*s:WW+l*s] = (window == m) * dout[i, j, k, l]

    return dx

相关推荐

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-10 17:46:02       5 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-10 17:46:02       5 阅读
  3. 在Django里面运行非项目文件

    2024-07-10 17:46:02       4 阅读
  4. Python语言-面向对象

    2024-07-10 17:46:02       6 阅读

热门阅读

  1. 获取和设置Spring Cookie

    2024-07-10 17:46:02       11 阅读
  2. Spring——配置说明

    2024-07-10 17:46:02       9 阅读
  3. springboot中在filter中用threadlocal存放用户身份信息

    2024-07-10 17:46:02       16 阅读
  4. LDAP技术解析:打造安全、高效的企业数据架构

    2024-07-10 17:46:02       12 阅读
  5. android 替换设置-安全里面的指纹背景图片

    2024-07-10 17:46:02       14 阅读
  6. Node.js的应用场景

    2024-07-10 17:46:02       12 阅读
  7. 并发请求的艺术:Postman中实现高效API测试

    2024-07-10 17:46:02       13 阅读