C++:继承

前言:欢迎进入C++进阶的学习,我认为学习更加需要注重是的过程,而并非结果,就如人固然会死但还是要吃饭。生命的意义在于每个人,每个人都是自己人生中的主角。人一到群体中,智商就严重降低,人们为了获得群体的认同,愿意抛弃独立性去换取那份让人倍感安全的归属感。所以在这个社会群体中,我们要找到属于自己的那条路。

我们先复习一下封装的概念:

1.数据和方法放到一起,把想给访问定义成公有,不想给你访问定义成私有和保护

2.一个类型放到另一个类型里面,通过typedef成员函数调整,封装成另一个全新的类型

继承的概念及定义

继承 (inheritance) 机制是面向对象程序设计 使代码可以复用 的最重要的手段,它允许程序员在 持原有类特性的基础上进行扩展 ,增加功能,这样产生新的类,称派生类。继承 呈现了面向对象 程序设计的层次结构 ,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用, 承是类设计层次的复用
class Person
{
public:
 void Print()
 {
 cout << "name:" << _name << endl;
 cout << "age:" << _age << endl;
 }
protected:
 string _name = "peter"; // 姓名
 int _age = 18;  // 年龄
};
// 继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分。这里体现出了
//Student和Teacher复用了Person的成员。下面我们使用监视窗口查看Student和Teacher对象可
//以看到变量的复用。调用Print可以看到成员函数的复用。
class Student : public Person
{
protected:
 int _stuid; // 学号
};

class Teacher : public Person
{
protected:
 int _jobid; // 工号
};

int main()
{
 Student s;
 Teacher t;
 s.Print();
 t.Print();
 return 0;
}

继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分,子类和父类统一

总结:
1. 基类 private 成员在派生类中无论以什么方式继承都是不可见的。这里的 不可见是指基类的私 有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面 都不能去访问它
2. 基类 private 成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected 可以看出保护成员限定符是因继承才出现的
3. 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min( 成员在基类的访问限定符,继承方式 )
public > protected > private。
4. 使用关键字 class 时默认的继承方式是 private ,使用 struct 时默认的继承方式是 public 不过 最好显示的写出继承方式
5. 在实际运用中一般使用都是 public 继承,几乎很少使用 protetced/private 继承 ,也不提倡 使用protetced/private 继承,因为 protetced/private 继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。
private:表示只能在该类中/类对象调用
protect:表示派生子类中/子类对象调用,或该类中/类对象调用
public:表示其他类对象,子类中/子类对象,本类中/类对象均可以调用

想要在子类中调用父类中的private,可以将父类private间接成protect或public中的函数调用

想要在外界调用父类中的private,可以将父类private间接成public中的函数调用

补充:默认继承可以不写继承方式

struct默认继承方式和访问限定符都是公有

class 默认继承方式和访问限定符都是私有

基类和派生类对象赋值转换

1.派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用.这里有个形象的说法叫切片 或者切割。寓意把派生类中父类那部分切来赋值过去。
2.基类对象不能赋值给派生类对象。
3.基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用.但是必须是基类 的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用RTTI(Run- Time Type Information)的dynamic_cast 来进行识别后进行安全转换。

public继承后

每一个子类对象都是一个特殊的父类对象

    切割/切片赋值兼容
	Student st;
	Person p = st;
	Person& ref = st;
	Person* ptr = &st;

	ref._name += 'x';
	ptr->_name += 'y';

这里不发生隐式类型转换,将子类对象包含的父类部分赋值给另一个父类对象,指针引用同理

继承中的作用域

1. 在继承体系中基类派生类都有独立的作用域
2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏, 也叫重定义(在子类成员函数中,可以使用 基类::基类成员 显示访问
3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
4. 注意在实际中在继承体系里面最好不要定义同名的成员
// B中的fun和A中的fun不是构成重载,因为不是在同一作用域
// B中的fun和A中的fun构成隐藏,成员函数满足函数名相同就构成隐藏。
class A
{
public:
 void fun()
 {
 cout << "func()" << endl;
 }
};
class B : public A
{
public:
 void fun(int i)
 {
 A::fun();
 cout << "func(int i)->" <<i<<endl;
 }
};
void Test()
{
 B b;
 b.fun(10);
};

派生类的默认成员函数

6个默认成员函数,默认的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类 中,这几个成员函数是如何生成的呢?
1. 派生类的构造函数必须先调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
3. 派生类的operator=必须要调用基类的operator=完成基类的复制。
4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员.因为这样才能
保证派生类对象先清理派生类成员再清理基类成员的顺序。
5. 派生类对象初始化先调用基类构造再调派生类构造。(先父后子)
6. 派生类对象析构清理先调用派生类析构再调基类的析构。(先子后父)
7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同 。那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加 virtual的情况下,子类析构函数和父类析构函数构成隐藏关系

class Person
{
public:
	Person(const char* name)
		: _name(name)
	{
		cout << "Person()" << endl;
	}

	Person(const Person& p)
		: _name(p._name)
	{
		cout << "Person(const Person& p)" << endl;
	}

	Person& operator=(const Person& p)
	{
		cout << "Person operator=(const Person& p)" << endl;
		if (this != &p)
			_name = p._name;
		return *this;
	}

	~Person()
	{
		cout << "~Person()" << endl;
	}
protected:
	string _name; // 姓名
};


class Student : public Person
{
public:
	// 父类+自己,父类的调用父类构造函数初始化(复用)
	Student(int num, const char* str, const char* name)
		:Person(name)
		,_num(num)
		,_str(str)
	{
		cout << "Student()" << endl;
	}

	// s2(s1)
	Student(const Student& s)
		:Person(s)
		,_num(s._num)
		,_str(s._str)
	{}

	Student& operator=(const Student& s)
	{
		if (this != &s)
		{
			Person::operator=(s);
			_num = s._num;
			_str = s._str;
		}

		return *this;
	}

	// 子类的析构也会隐藏父类
	// 因为后续多态的需要,析构函数名字会被统一处理成destructor
	~Student()
	{
		// 显示写无法先子后父
		//Person::~Person();

		cout << _name << endl;
		cout << "~Student()" << endl;

		// 注意,为了析构顺序是先子后父,子类析构函数结束后会自动调用父类析构
	}

protected:
	int _num;	 //学号
	string _str;

	// 父类成员,当成一个整体的一个自定义类型成员
	// 子类的成员(跟以前一样)
	// a、内置类型
	// b、自定义类型
};

构造函数:如果父类中没有默认构造函数,那么就需要在子类中复用,先父后子

如果父类中有默认构造函数,那么系统会按先父后子的顺序调用

析构函数:无需复用,系统直接先调用父类再调用子类

拷贝构造:显示调用则需要复用成先父后子

operator=:显示调用则需要复用成先父后子

继承与友元

友元关系不能继承 ,也就是说基类友元不能访问子类私有和保护成员
class Student;
class Person
{
public:
 friend void Display(const Person& p, const Student& s);
protected:
 string _name; // 姓名
};
class Student : public Person
{
protected:
 int _stuNum; // 学号
};
void Display(const Person& p, const Student& s)
{
 cout << p._name << endl;
 cout << s._stuNum << endl;
}
void main()
{
 Person p;
 Student s;
 Display(p, s);
}

继承与静态成员

基类定义了 static 静态成员,则整个继承体系里面只有一个这样的成员 。无论派生出多少个子类,都只有一个static 成员实例
class Person
{
public :
 Person () {++ _count ;}
protected :
 string _name ; // 姓名
public :
 static int _count; // 统计人的个数。
};
int Person :: _count = 0;
class Student : public Person
{
protected :
 int _stuNum ; // 学号
};
class Graduate : public Student
{
protected :
 string _seminarCourse ; // 研究科目
};
void TestPerson()
{
 Student s1 ;
 Student s2 ;
 Student s3 ;
 Graduate s4 ;
 cout <<" 人数 :"<< Person ::_count << endl;//4
 Student ::_count = 0;
 cout <<" 人数 :"<< Person ::_count << endl;//0
}

_count 静态成员只有一份,共用的

父类静态成员属于当前类,也属于当前类的所有派生类

复杂的菱形继承及菱形虚拟继承

单继承:一个子类只有一个直接父类时称这个继承关系为单继承
多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承

菱形继承:菱形继承是多继承的一种特殊情况。

菱形继承的问题:从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。
Assistant 的对象中 Person 成员会有 份。

class Person
{
public :
 string _name ; // 姓名
};
class Student : public Person
{
protected :
 int _num ; //学号
};
class Teacher : public Person
{
protected :
 int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :
 string _majorCourse ; // 主修课程
};
void Test ()
{
 // 这样会有二义性无法明确知道访问的是哪一个
 Assistant a ;
//a._name = "peter";
// 需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决
 a.Student::_name = "xxx";
 a.Teacher::_name = "yyy";
}
虚拟继承 可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在 Student Teacher 的继承 Person 时使用虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地 方去使用。
class Person
{
public :
 string _name ; // 姓名
};
class Student : virtual public Person
{
protected :
 int _num ; //学号
};
class Teacher : virtual public Person
{
protected :
 int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :
 string _majorCourse ; // 主修课程
};
void Test ()
{
 Assistant a ;
 a._name = "peter";
}
虚拟继承解决数据冗余和二义性的原理
class A
{
public:
 int _a;
};
// class B : public A
class B : virtual public A
{
public:
 int _b;
};
// class C : public A
class C : virtual public A
{
public:
 int _c;
};
class D : public B, public C
{
public:
 int _d;
};
int main()
{
 D d;
 d.B::_a = 1;
 d.C::_a = 2;
 d._b = 3;
 d._c = 4;
 d._d = 5;
 return 0;
}

下图是菱形继承的内存对象成员模型:这里可以看到数据冗余 

下图是菱形虚拟继承的内存对象成员模型:这里可以分析出 D 对象中将 A 放到的了对象组成的最下 面,这个A 同时属于 B C ,那么 B C 如何去找到公共的 A 呢? 这里是通过了 B C 的两个指针,指 向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量 可以找到下面的 A

继承的总结和反思

1. 很多人说 C++ 语法复杂,其实多继承就是一个体现。有了多继承 ,就存在菱形继承,有了菱形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出多继承,一定不要设计出菱形继承。否则在复杂度及性能上都有问题。
2. 多继承可以认为是 C++ 的缺陷之一,很多后来的 OO 语言都没有多继承,如 Java
3. 继承和组合
public 继承是一种 is-a 的关系。也就是说每个派生类对象都是一个基类对象。
组合是一种 has-a 的关系。假设 B 组合了 A ,每个 B 对象中都有一个 A 对象。
优先使用对象组合,而不是类继承
继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称为白箱复用(white-box reuse) 。术语 白箱 是相对可视性而言:在继承方式中,基类的内部细节对子类可见 。继承一定程度破坏了基类的封装,基类的改变,对派生类有很大的影响。派生类和基类间的依赖关系很强,耦合度高。
对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象
来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复
(black-box reuse) ,因为对象的内部细节是不可见的。对象只以 黑箱 的形式出现。
组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被封装。
实际尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有
些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用
继承,可以用组合,就用组合。
// Car和BMW Car和Benz构成is-a的关系
   class Car{
   protected:
   string _colour = "白色"; // 颜色
   string _num = "陕ABIT00"; // 车牌号
   };
   
   class BMW : public Car{
   public:
   void Drive() {cout << "好开-操控" << endl;}
   };
   
   class Benz : public Car{
   public:
   void Drive() {cout << "好坐-舒适" << endl;}
   };
   
   // Tire和Car构成has-a的关系
   
   class Tire{
   protected:
       string _brand = "Michelin";  // 品牌
       size_t _size = 17;         // 尺寸
   
   };
   
   class Car{
   protected:
   string _colour = "白色"; // 颜色
   string _num = "陕ABIT00"; // 车牌号
    Tire _t; // 轮胎
   };  

相关推荐

  1. <span style='color:red;'>C</span>++<span style='color:red;'>继承</span>

    C++继承

    2024-04-21 04:00:02      29 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-04-21 04:00:02       16 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-04-21 04:00:02       16 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-04-21 04:00:02       15 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-04-21 04:00:02       18 阅读

热门阅读

  1. pytorch中模型训练的学习率动态调整

    2024-04-21 04:00:02       11 阅读
  2. web应用使用spring

    2024-04-21 04:00:02       16 阅读
  3. 2024.4.20力扣每日一题——组合总和

    2024-04-21 04:00:02       11 阅读
  4. 游戏中的伤害类型

    2024-04-21 04:00:02       11 阅读
  5. 正则表达式大全,30个正则表达式详细案例

    2024-04-21 04:00:02       17 阅读
  6. 上海计算机学会2023年12月月赛C++丙组T2移动复位

    2024-04-21 04:00:02       13 阅读
  7. 搭建vue3组件库(一):Monorepo项目搭建

    2024-04-21 04:00:02       16 阅读
  8. Docker常见命令学习

    2024-04-21 04:00:02       17 阅读
  9. mac修改/etc/profile导致终端所有命令不可使用

    2024-04-21 04:00:02       15 阅读
  10. CentOS系统上经常使用的一些基本命令

    2024-04-21 04:00:02       13 阅读
  11. android11启动服务

    2024-04-21 04:00:02       13 阅读