数学系的数字信号处理:傅立叶变换

本专栏:数学系的数字信号处理 的前置知识主要有:数学分析(傅立叶级数的部分),泛函分析( L p L^p Lp空间的部分)

傅立叶变换

定义:Fourier 变换
f ( x ) f(x) f(x) 连续可微,且 ∫ − ∞ ∞ ∣ f ( t ) ∣ d t < ∞ \int_{-\infty}^{\infty}|f(t)|\mathrm{d}t<\infty f(t)dt<,则函数
F ( f ) ( x ) = 1 2 π ∫ − ∞ ∞ f ( t ) e − i x t d t \mathscr{F}(f)(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(t)e^{-ixt}\mathrm{d}t F(f)(x)=2π 1f(t)eixtdt 称为 f ( x ) f(x) f(x) 的傅立叶变换
F − 1 ( f ) ( x ) = 1 2 π ∫ − ∞ ∞ f ( λ ) e i λ x d λ \mathscr{F}^{-1}(f)(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(\lambda)e^{i\lambda x}\mathrm{d}\lambda F1(f)(x)=2π 1f(λ)exdλ称为 f ( x ) f(x) f(x) 的傅立叶逆变换

注:

  1. 有的书上定义的傅立叶变换的系数可能有所不同,比如说 F \mathscr{F} F 的系数为1,而 F − 1 \mathscr{F}^{-1} F1 的系数为 1 2 π \frac{1}{2\pi} 2π1,无论如何,这两者之积始终为 1 2 π \frac{1}{2\pi} 2π1
  2. f ( x ) f(x) f(x) 存在间断点,则间断点处的函数值用 f ( x + 0 ) + f ( x − 0 ) 2 \frac{f(x+0)+f(x-0)}{2} 2f(x+0)+f(x0) 代替
  3. 条件 ∫ − ∞ ∞ ∣ f ( t ) ∣ d t < ∞ \int_{-\infty}^{\infty}|f(t)|\mathrm{d}t<\infty f(t)dt< 是为了 F ( f ) ( x ) \mathscr{F}(f)(x) F(f)(x) 有意义:
    ∣ F ( f ) ( x ) ∣ ≤ 1 2 π ∫ − ∞ ∞ ∣ f ( t ) e − i x t ∣ d t = 1 2 π ∫ − ∞ ∞ ∣ f ( t ) ∣ d t < ∞ \begin{split} |\mathscr{F}(f)(x)|&\leq \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}|f(t)e^{-ixt}|\mathrm{d}t\\ &=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}|f(t)|\mathrm{d}t<\infty \end{split} F(f)(x)2π 1f(t)eixtdt=2π 1f(t)dt<但这个条件稍强,多数情况下可减弱为积分条件收敛,也可保证 F ( f ) ( x ) \mathscr{F}(f)(x) F(f)(x) 有意义

性质

  • F \mathscr{F} F 是可逆线性算子: F − 1 F ( f ) = f \mathscr{F}^{-1}\mathscr{F}(f)=f F1F(f)=f
  • F − 1 \mathscr{F}^{-1} F1 F \mathscr{F} F 互为伴随算子,即 < F ( f ) , g > = < f , F − 1 ( g ) > <\mathscr{F}(f),g>=<f,\mathscr{F}^{-1}(g)> <F(f),g>=<f,F1(g)>
  • 多项式可以从变换中取出: F [ t n f ( t ) ] ( x ) = i n d n d x n [ F ( f ) ( x ) ] \mathscr{F}[t^nf(t)](x)=i^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}[\mathscr{F}(f)(x)] F[tnf(t)](x)=indxndn[F(f)(x)] F − 1 [ t n f ( t ) ] ( x ) = ( − i ) n d n d x n [ F − 1 ( f ) ( x ) ] \mathscr{F}^{-1}[t^nf(t)](x)=(-i)^n\frac{\mathrm{d}^n}{\mathrm{d}x^n}[\mathscr{F}^{-1}(f)(x)] F1[tnf(t)](x)=(i)ndxndn[F1(f)(x)]
  • 微分算子可以从变换中取出: F [ f ( n ) t ] ( x ) = ( i x ) n F ( f ) ( x ) \mathscr{F}[f^{(n)}t](x)=(ix)^n\mathscr{F}(f)(x) F[f(n)t](x)=(ix)nF(f)(x) F − 1 [ f ( n ) t ] ( x ) = ( − i x ) n F − 1 ( f ) ( x ) \mathscr{F}^{-1}[f^{(n)}t](x)=(-ix)^n\mathscr{F}^{-1}(f)(x) F1[f(n)t](x)=(ix)nF1(f)(x)
  • 做线性代换: F [ f ( t − a ) ] ( x ) = e − i a x F ( f ) ( x ) \mathscr{F}[f(t-a)](x)=e^{-iax}\mathscr{F}(f)(x) F[f(ta)](x)=eiaxF(f)(x) F [ f ( b t ) ] ( x ) = 1 b F ( f ) ( x b ) \mathscr{F}[f(bt)](x)=\frac{1}{b}\mathscr{F}(f)(\frac{x}{b}) F[f(bt)](x)=b1F(f)(bx)
  • 等价形式: F ( f ) ( x ) = 1 2 π L ( f ) ( i x ) \mathscr{F}(f)(x)=\frac{1}{\sqrt{2\pi}}\mathscr{L}(f)(ix) F(f)(x)=2π 1L(f)(ix)其中 f ( t ) = 0 ( t < 0 ) f(t)=0(t<0) f(t)=0(t<0)
    L ( f ) ( s ) = ∫ 0 ∞ f ( t ) e − t s d t \mathscr{L}(f)(s)=\int_0^{\infty}f(t)e^{-ts}\mathrm{d}t L(f)(s)=0f(t)etsdt称为Laplace(拉普拉斯)变换

定义:卷积
f , g ∈ L 2 f,g\in L^2 f,gL2,则 ( f ∗ g ) ( t ) = ∫ − ∞ ∞ f ( t − x ) g ( x ) d x = ∫ − ∞ ∞ f ( x ) g ( t − x ) d x \begin{split} (f*g)(t)&=\int_{-\infty}^{\infty}f(t-x)g(x)\mathrm{d}x\\ &=\int_{-\infty}^{\infty}f(x)g(t-x)\mathrm{d}x\\ \end{split} (fg)(t)=f(tx)g(x)dx=f(x)g(tx)dx称为 f f f g g g 的卷积

卷积与傅立叶变换
f , g ∈ L 2 f,g\in L^2 f,gL2 ,则
F [ f ∗ g ] = 2 π F ( f ) ⋅ F ( g ) \mathscr{F}[f*g]=\sqrt{2\pi}\mathscr{F}(f)\cdot \mathscr{F}(g) F[fg]=2π F(f)F(g) F − 1 [ f ⋅ g ] = 1 2 π F − 1 ( f ) ∗ F − 1 ( g ) \mathscr{F}^{-1}[f\cdot g]=\frac{1}{\sqrt{2\pi}}\mathscr{F}^{-1}(f)*\mathscr{F}^{-1}(g) F1[fg]=2π 1F1(f)F1(g)

注:记住其中一个可以推出另一个

Plancherel 定理
傅立叶(逆)变换具有 L 2 L^2 L2 空间上的保范性,即 ∀ f , g ∈ L 2 \forall f,g\in L^2 f,gL2,有
< F ( f ) , F ( g ) > = < f , g > <\mathscr{F}(f),\mathscr{F}(g)>=<f,g> <F(f),F(g)>=<f,g> < F − 1 ( f ) , F − 1 ( g ) > = < f , g > <\mathscr{F}^{-1}(f),\mathscr{F}^{-1}(g)>=<f,g> <F1(f),F1(g)>=<f,g>特别地, ∣ ∣ F ( f ) ∣ ∣ = ∣ ∣ f ∣ ∣ ||\mathscr{F}(f)||=||f|| ∣∣F(f)∣∣=∣∣f∣∣

证明
只需利用 F − 1 \mathscr{F}^{-1} F1 F \mathscr{F} F 互为伴随算子这一点

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-03-23 12:32:02       98 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-03-23 12:32:02       106 阅读
  3. 在Django里面运行非项目文件

    2024-03-23 12:32:02       87 阅读
  4. Python语言-面向对象

    2024-03-23 12:32:02       96 阅读

热门阅读

  1. android gdb 调试

    2024-03-23 12:32:02       48 阅读
  2. Android_NDK调试

    2024-03-23 12:32:02       42 阅读
  3. 简单函数_学分绩点

    2024-03-23 12:32:02       41 阅读
  4. LeetCode232:用栈实现队列

    2024-03-23 12:32:02       36 阅读
  5. 复试专业前沿问题问答合集9——密码学

    2024-03-23 12:32:02       39 阅读
  6. 00X基于Jetson Nano+yolov4-tiny的目标检测

    2024-03-23 12:32:02       41 阅读