ROS Kinetic通信编程:话题、服务、动作编程


接上篇,继续学习ROS通信编程基础

一、话题编程

步骤:

  • 创建发布者
    • 初始化ROS节点
    • 向ROS Master注册节点信息,包括发布的话题名和话题中的消息类型
    • 按照一定频率循环发布消息
  • 创建订阅者
    • 初始化ROS节点
    • 订阅需要的话题
    • 循环等待话题消息,接受到消息后进行回调函数
    • 回调函数中完成消息处理
  • 添加编译选项
    • 设置需要编译的代码和生成的可执行文件
    • 设置链接库
    • 设置依赖
  • 运行可执行程序

talker.cpp

#include<sstream>
#include"ros/ros.h"
#include"std_msgs/String.h"
int main(int argc,char **argv)
{
	//ROS节点初始化
	ros::init(argc,argv,"talker");
	//创建节点句柄
	ros::NodeHandle n;
	//创建一个Publisher,发布名为chatter的topic,消息类型为std_msgs::String
	ros::Publisher chatter_pub=n.advertise<std_msgs::String>("chatter",1000);
	//设置循环的频率
	ros::Rate loop_rate(10);
	int count=0;
	while(ros::ok())
	{
		//初始化std_msgs::String类型的消息
		std_msgs::String msg;
		std::stringstream ss;
		ss<<"hello world"<<count;
		msg.data=ss.str();
		//发布消息
		ROS_INFO("%s",msg.data.c_str());
		chatter_pub.publish(msg);
		//循环等待回调函数
		ros::spinOnce();
		//接受循环频率延时
		loop_rate.sleep();
		++count;
	}
	return 0;
}

listener.cpp

#include"ros/ros.h"
#include"std_msgs/String.h"
//接收到订阅的消息,会进入消息的回调函数
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
	//将接收到的消息打印处理
	ROS_INFO("I heard:{%s}",msg->data.c_str());
}
int main(int argc,char **argv)
{
	//初始化ROS节点
	ros::init(argc,argv,"listener");
	//创建节点句柄
	ros::NodeHandle n;
	//创建一个Subscriber,订阅名为chatter的topic,注册回调函数chatterCallback
	ros::Subscriber sub=n.subscribe("chatter",1000,chatterCallback);
	//循环等待回调函数
	ros::spin();
	return 0;
}

在CMakeLists.txt末尾添加编译选项

add_executable(talker src/talker.cpp)
target_link_libraries(talker ${catkin_LIBRARIES})

add_executable(listener src/listener.cpp)
target_link_libraries(listener ${catkin_LIBRARIES})

编译

cd catkin_ws
catkin_make

在这里插入图片描述
运行程序

# 以下是对于Ubantu 16.04的操作,其他版本的也许操作会简洁很多
roscore
#打开新终端
cd ~/catkin_ws
#下面这一步是为了保证rosrun命令能够找到相应的功能包,有可以省去这一步骤的方法,各位可以自行查找
source ~/catkin_ws/devel/setup.bash
rosrun learning_communication talker
#打开新终端
cd ~/catkin_ws
source ~/catkin_ws/devel/setup.bash
rosrun learning_communication listener

在这里插入图片描述
如图,发送了hello world的同时接收了hello world。

二、服务编程

定义服务请求与应答的方式

  • 定义srv文件
     mkdir ~/catkin_ws/src/learning_communication/srv
     sudo nano AddTwoInts.srv
    
  • AddTwoInts.srv
    int64 a
    int64 b
    ---
    int64 sum
    
  • 用gedit打开package.xml,在里面添加功能包依赖
    <build_depend>message_generation</build_depend>
    <exec_depend>message_runtime</exec_depend>
    
  • 在CMakeLists.txt添加编译选项
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述
步骤:

  • 创建服务器
    • 初始化ROS节点
    • 创建Serve实例
    • 循环等待服务请求,进入回调函数
    • 在回调函数中完成服务功能的处理,并反馈应答数据
  • 创建客户端
    • 初始化ROS节点
    • 创建一个Client实例
    • 发布服务请求数据
    • 等待Serve处理之后的应答结果
  • 添加编译选项
    • 设置需要编译的代码和生成的可执行文件
    • 设置链接库
    • 设置依赖
  • 运行可执行程序
    server.cpp
#include<ros/ros.h>
#include"learning_communication/AddTwoInts.h"
//service回调函数,输入参数req,输出参数res
bool add(learning_communication::AddTwoInts::Request &req,learning_communication::AddTwoInts::Response &res)
{
	//将输入的参数中的请求数据相加,结果放到应答变量中
	res.sum=req.a+req.b;
	ROS_INFO("request: x=%1d,y=%1d",(long int)req.a,(long int)req.b);
	ROS_INFO("sending back response:[%1d]",(long int)res.sum);
	return true;
}
int main(int argc,char **argv)
{
	//ROS节点初始化
	ros::init(argc,argv,"add_two_ints_server");
	//创建节点句柄
	ros::NodeHandle n;
	//创建一个名为add_two_ints的server,注册回调函数add()
	ros::ServiceServer service=n.advertiseService("add_two_ints",add);
	//循环等待回调函数
	ROS_INFO("Ready to add two ints.");
	ros::spin();
	return 0;
}

client.cpp

#include<cstdlib>
#include<ros/ros.h>
#include"learning_communication/AddTwoInts.h"
int main(int argc,char **argv)
{
	//ROS节点初始化
	ros::init(argc,argv,"add_two_ints_client");
	//从终端命令行获取两个加数
	if(argc!=3)
	{
		ROS_INFO("usage:add_two_ints_client X Y");
		return 1;
	}
	//创建节点句柄
	ros::NodeHandle n;
	//创建一个client,请求add_two_ints_service
	//service消息类型是learning_communication::AddTwoInts
	ros::ServiceClient client=n.serviceClient<learning_communication::AddTwoInts>("add_two_ints");
	//创建learning_communication::AddTwoInts类型的service消息
	learning_communication::AddTwoInts srv;
	srv.request.a=atoll(argv[1]);
	srv.request.b=atoll(argv[2]);
	//发布service请求,等待加法运算的应答请求
	if(client.call(srv))
	{
		ROS_INFO("sum: %1d",(long int)srv.response.sum);
	}
	else
	{
		ROS_INFO("Failed to call service add_two_ints");
		return 1;
	}
	return 0;
}

关于编译时一直出现这样的报错,注意看是不是有些比如这个符号“_”没打。
在这里插入图片描述
添加编译设置
在这里插入图片描述
编译通过
在这里插入图片描述
输入指令

roscore
#打开新终端
source ~/catkin_ws/devel/setup.bash
rosrun learning_communication server
#打开新终端
source ~/catkin_ws/devel/setup.bash
rosrun learning_communication client 11 12

在这里插入图片描述

三、动作编程

动作是一种基于ROS消息实现的问答通信机制,它包含连续反馈,可以在任务过程中止运行。
动作(Action)的接口
在这里插入图片描述
练习ROS动作编程: 客户端发送一个运动坐标,模拟机器人运动到目标位置的过程。包括服务端和客户端的代码实现,要求带有实时位置反馈。

创建工作区间

#创建功能包
cd catkin_ws/src/
catkin_create_pkg learn_action std_msgs rospy roscpp
#编译功能包
cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.bash

在这里插入图片描述
创建action文件夹,并在里面创建TurtleMove.action文件

# Define the goal 
float64 turtle_target_x  
# Specify Turtle's target position 
float64 turtle_target_y 
float64 turtle_target_theta 
---
# Define the result 
float64 turtle_final_x 
float64 turtle_final_y 
float64 turtle_final_theta 
--- 
# Define a feedback message 
float64 present_turtle_x 
float64 present_turtle_y 
float64 present_turtle_theta

在learn_action的src文件夹下,创建TurtleMove_server.cpp文件和TurtleMove_client.cpp文件
在这里插入图片描述
TurtleMove_server.cpp

  /*      此程序通过通过动作编程实现由client发布一个目标位置    然后控制Turtle运动到目标位置的过程  */ 
#include <ros/ros.h> 
#include <actionlib/server/simple_action_server.h> 
#include "learn_action/TurtleMoveAction.h" 
#include <turtlesim/Pose.h>  
#include <turtlesim/Spawn.h> 
#include <geometry_msgs/Twist.h>   
typedef actionlib::SimpleActionServer<learn_action::TurtleMoveAction> Server;   
struct Myturtle 
{     
     float x;     
     float y;     
     float theta; 
 }turtle_original_pose,turtle_target_pose;   
 ros::Publisher turtle_vel;  
 void posecallback(const turtlesim::PoseConstPtr& msg)  
 {    
 	ROS_INFO("Turtle1_position:(%f,%f,%f)",msg->x,msg->y,msg->theta);   
 	turtle_original_pose.x=msg->x;    
 	turtle_original_pose.y=msg->y;   
 	turtle_original_pose.theta=msg->theta;  
 }   
 // 收到action的goal后调用该回调函数 
 void execute(const learn_action::TurtleMoveGoalConstPtr& goal, Server* as) 
 {     
 	learn_action::TurtleMoveFeedback feedback;       
 	ROS_INFO("TurtleMove is working.");     
 	turtle_target_pose.x=goal->turtle_target_x;     
 	turtle_target_pose.y=goal->turtle_target_y;      
 	turtle_target_pose.theta=goal->turtle_target_theta;          
 	geometry_msgs::Twist vel_msgs;     
 	float break_flag;          
 	while(1)     
 	{           
 		ros::Rate r(10);                  
 		vel_msgs.angular.z = 4.0 * (atan2(turtle_target_pose.y-turtle_original_pose.y,                                    turtle_target_pose.x-turtle_original_pose.x)-turtle_original_pose.theta);         
 		vel_msgs.linear.x = 0.5 * sqrt(pow(turtle_target_pose.x-turtle_original_pose.x, 2) +                                       pow(turtle_target_pose.y-turtle_original_pose.y, 2));          
 		break_flag=sqrt(pow(turtle_target_pose.x-turtle_original_pose.x, 2) +                                         pow(turtle_target_pose.y-turtle_original_pose.y, 2));         
 		turtle_vel.publish(vel_msgs);
 		           
 		feedback.present_turtle_x=turtle_original_pose.x;         
 		feedback.present_turtle_y=turtle_original_pose.y;         
 		feedback.present_turtle_theta=turtle_original_pose.theta;         
 		as->publishFeedback(feedback);         
 		ROS_INFO("break_flag=%f",break_flag);         if(break_flag<0.1) break;         r.sleep();     }         // 当action完成后,向客户端返回结果         ROS_INFO("TurtleMove is finished.");         
 		as->setSucceeded();
}   
int main(int argc, char** argv) 
{     
	ros::init(argc, argv, "TurtleMove_server");     
	ros::NodeHandle n,turtle_node;     
	ros::Subscriber sub =turtle_node.subscribe("turtle1/pose",10,&posecallback);//订阅小乌龟的位置信息     
	turtle_vel = turtle_node.advertise<geometry_msgs::Twist>("turtle1/cmd_vel",10);//发布控制小乌龟运动的速度     
	// 定义一个服务器         
	Server server(n, "TurtleMove", boost::bind(&execute, _1, &server), false);        
	 // 服务器开始运行         
	 server.start();         
	 ROS_INFO("server has started.");     
	 ros::spin();       
	 return 0;
} 

TurtleMove_client.cpp

#include <actionlib/client/simple_action_client.h> 
#include "learn_action/TurtleMoveAction.h" 
#include <turtlesim/Pose.h>  
#include <turtlesim/Spawn.h> 
#include <geometry_msgs/Twist.h>   
typedef actionlib::SimpleActionClient<learn_action::TurtleMoveAction> Client;   
struct Myturtle 
{     
	float x;     
	float y;   
	float theta; 
}turtle_present_pose;   
// 当action完成后会调用该回调函数一次 
void doneCb(const actionlib::SimpleClientGoalState& state,         const learn_action::TurtleMoveResultConstPtr& result) 
{     
	ROS_INFO("Yay! The TurtleMove is finished!");     
	ros::shutdown(); 
}   
// 当action激活后会调用该回调函数一次 
void activeCb() 
{     
	ROS_INFO("Goal just went active"); 
}   
// 收到feedback后调用该回调函数 
void feedbackCb(const learn_action::TurtleMoveFeedbackConstPtr& feedback) 
{     
	ROS_INFO(" present_pose : %f  %f  %f", feedback->present_turtle_x,                    feedback->present_turtle_y,feedback->present_turtle_theta); 
}   
int main(int argc, char** argv) 
{     
	ros::init(argc, argv, "TurtleMove_client");       
	// 定义一个客户端     
	Client client("TurtleMove", true);       
	// 等待服务器端     
	ROS_INFO("Waiting for action server to start.");     
	client.waitForServer();     
	ROS_INFO("Action server started, sending goal.");      
	 // 创建一个action的goal     
	 learn_action::TurtleMoveGoal goal;    
	 goal.turtle_target_x = 1;     
	 goal.turtle_target_y = 1;     
	 goal.turtle_target_theta = 0;       
	 // 发送action的goal给服务器端,并且设置回调函数     
	 client.sendGoal(goal,  &doneCb, &activeCb, &feedbackCb);       
	 ros::spin();      
	 return 0; 
} 

在package.xml里面添加依赖

<build_depend>message_generation</build_depend>  
<build_depend>actionlib</build_depend>  
<build_depend>actionlib_msgs</build_depend>
<exec_depend>message_runtime</exec_depend>  
<exec_depend>actionlib</exec_depend>  
<exec_depend>actionlib_msgs</exec_depend> 

添加完就是这样
在这里插入图片描述
修改learn_action里面的CMakeLists.txt,添加代码
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
添加编译选项

add_executable(TurtleMove_client src/TurtleMove_client.cpp)
target_link_libraries(TurtleMove_client ${catkin_LIBRARIES})
add_dependencies(TurtleMove_client ${PROJECT_NAME}_gencpp)  

add_executable(TurtleMove_server src/TurtleMove_server.cpp)
target_link_libraries(TurtleMove_server ${catkin_LIBRARIES})
add_dependencies(TurtleMove_server ${PROJECT_NAME}_gencpp) 

编译
在这里插入图片描述

roscore
#开一个新终端窗口
source ./devel/setup.bash
rosrun turtlesim turtlesim.node
#新终端
source ./devel/setup.bash
rosrun learn_action TurtleMove_server
#新终端
source ./devel/setup.bash
rosrun learn_action TurtleMove_client

运行结果如下
在这里插入图片描述

相关推荐

  1. 51单片机——串口通信编程

    2024-03-16 09:16:03       29 阅读
  2. socket编程实现TCP通信

    2024-03-16 09:16:03       13 阅读
  3. Porthopper服务测试程序编程

    2024-03-16 09:16:03       38 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-03-16 09:16:03       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-03-16 09:16:03       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-03-16 09:16:03       18 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-03-16 09:16:03       20 阅读

热门阅读

  1. 【gpt实践】50个提升工作效率的GPT指令

    2024-03-16 09:16:03       18 阅读
  2. docker 的常用命令

    2024-03-16 09:16:03       17 阅读
  3. Redis 入门简介

    2024-03-16 09:16:03       18 阅读
  4. icmp报文分片设置

    2024-03-16 09:16:03       22 阅读
  5. SfM——八点法计算F矩阵(基础矩阵)与三角测量

    2024-03-16 09:16:03       20 阅读
  6. 【Numpy】(1)创建数组

    2024-03-16 09:16:03       18 阅读
  7. Redis对过期key的删除策略

    2024-03-16 09:16:03       14 阅读
  8. 前端框架的发展史

    2024-03-16 09:16:03       22 阅读
  9. JVM篇面试题 2024

    2024-03-16 09:16:03       20 阅读
  10. WPF触发器与模板

    2024-03-16 09:16:03       23 阅读
  11. Go 构建高效的二叉搜索树联系簿

    2024-03-16 09:16:03       19 阅读
  12. C语言经典面试题目(八)

    2024-03-16 09:16:03       22 阅读
  13. HCI命令

    2024-03-16 09:16:03       14 阅读