ctfshow刷题记录5

easyrsa5

e = 284100478693161642327695712452505468891794410301906465434604643365855064101922252698327584524956955373553355814138784402605517536436009073372339264422522610010012877243630454889127160056358637599704871937659443985644871453345576728414422489075791739731547285138648307770775155312545928721094602949588237119345
n = 468459887279781789188886188573017406548524570309663876064881031936564733341508945283407498306248145591559137207097347130203582813352382018491852922849186827279111555223982032271701972642438224730082216672110316142528108239708171781850491578433309964093293907697072741538649347894863899103340030347858867705231
c = 350429162418561525458539070186062788413426454598897326594935655762503536409897624028778814302849485850451243934994919418665502401195173255808119461832488053305530748068788500746791135053620550583421369214031040191188956888321397450005528879987036183922578645840167009612661903399312419253694928377398939392827

 这里引用一下某位佬对于维纳攻击的总结,如有侵权立删RSA之初学维纳攻击-CSDN博客

Wiener’s Attack
适用情况:e过大或过小。

在e过大或过小的情况下,可使用算法从e中快速推断出d的值。

Wiener 表示如果满足:

d<1/3n1/4

那么一种基于连分数的特殊攻击类型就可以危害 RSA 的安全。此时需要满足:

q<p<2q

如果满足上述条件,通过 Wiener Attack 可以在多项式时间中分解 n,思路如下:

N = pq

φ(n)=(p−1)(q−1)=pq−(p+q)+1=N−(p+q)+1

∵p, q 非常大 ,
∴pq≫p+q,
∴φ(n)≈N

∵ed≡1modφ(n),
∴ed−1=kφ(n),
这个式子两边同除 dφ(n)

可得:

eφ(n)−kd=1dφ(n)

∵φ(n)≈N,
∴eN−kd=1dφ(n),同样 dφ(n) 是一个很大的数,所以 eN 略大于 kd, e 和 N 是我们是知道的,公钥中给我们的,所以我们计算出 eN后,比它略小的 kd 用计算 eN 的连分数展开,依次算出这个分数每一个渐进分数,由于 eN 略大于 kd,wiener 证明了,该攻击能精确的覆盖 kd。

能力有限,维纳攻击解题代码复杂,目前只能套用脚本

import gmpy2
import libnum

def continuedFra(x, y):
    """计算连分数
    :param x: 分子
    :param y: 分母
    :return: 连分数列表
    """
    cf = []
    while y:
        cf.append(x // y)
        x, y = y, x % y
    return cf
def gradualFra(cf):
    """计算传入列表最后的渐进分数
    :param cf: 连分数列表
    :return: 该列表最后的渐近分数
    """
    numerator = 0
    denominator = 1
    for x in cf[::-1]:
        # 这里的渐进分数分子分母要分开
        numerator, denominator = denominator, x * denominator + numerator
    return numerator, denominator
def solve_pq(a, b, c):
    """使用韦达定理解出pq,x^2−(p+q)∗x+pq=0
    :param a:x^2的系数
    :param b:x的系数
    :param c:pq
    :return:p,q
    """
    par = gmpy2.isqrt(b * b - 4 * a * c)
    return (-b + par) // (2 * a), (-b - par) // (2 * a)
def getGradualFra(cf):
    """计算列表所有的渐近分数
    :param cf: 连分数列表
    :return: 该列表所有的渐近分数
    """
    gf = []
    for i in range(1, len(cf) + 1):
        gf.append(gradualFra(cf[:i]))
    return gf


def wienerAttack(e, n):
    """
    :param e:
    :param n:
    :return: 私钥d
    """
    cf = continuedFra(e, n)
    gf = getGradualFra(cf)
    for d, k in gf:
        if k == 0: continue
        if (e * d - 1) % k != 0:
            continue
        phi = (e * d - 1) // k
        p, q = solve_pq(1, n - phi + 1, n)
        if p * q == n:
            return d


e = 284100478693161642327695712452505468891794410301906465434604643365855064101922252698327584524956955373553355814138784402605517536436009073372339264422522610010012877243630454889127160056358637599704871937659443985644871453345576728414422489075791739731547285138648307770775155312545928721094602949588237119345
n = 468459887279781789188886188573017406548524570309663876064881031936564733341508945283407498306248145591559137207097347130203582813352382018491852922849186827279111555223982032271701972642438224730082216672110316142528108239708171781850491578433309964093293907697072741538649347894863899103340030347858867705231
c = 350429162418561525458539070186062788413426454598897326594935655762503536409897624028778814302849485850451243934994919418665502401195173255808119461832488053305530748068788500746791135053620550583421369214031040191188956888321397450005528879987036183922578645840167009612661903399312419253694928377398939392827
d=wienerAttack(e, n)
m=pow(c, d, n)
print(libnum.n2s(m).decode())

flag{very_biiiiig_e}

easyrsa6 

import gmpy2,libnum
from Crypto.Util.number import getPrime
from secret import flag

e = 0x10001
p = getPrime(1024)
q = gmpy2.next_prime(p)
n = p * q
print("n =",n)
m = libnum.s2n(flag)
c = pow(m,e,n)
print("c =", c)

# n = 26737417831000820542131903300607349805884383394154602685589253691058592906354935906805134188533804962897170211026684453428204518730064406526279112572388086653330354347467824800159214965211971007509161988095657918569122896402683130342348264873834798355125176339737540844380018932257326719850776549178097196650971801959829891897782953799819540258181186971887122329746532348310216818846497644520553218363336194855498009339838369114649453618101321999347367800581959933596734457081762378746706371599215668686459906553007018812297658015353803626409606707460210905216362646940355737679889912399014237502529373804288304270563
# c = 18343406988553647441155363755415469675162952205929092244387144604220598930987120971635625205531679665588524624774972379282080365368504475385813836796957675346369136362299791881988434459126442243685599469468046961707420163849755187402196540739689823324440860766040276525600017446640429559755587590377841083082073283783044180553080312093936655426279610008234238497453986740658015049273023492032325305925499263982266317509342604959809805578180715819784421086649380350482836529047761222588878122181300629226379468397199620669975860711741390226214613560571952382040172091951384219283820044879575505273602318856695503917257

yafu分解n 

import gmpy2, libnum
from Crypto.Util.number import getPrime

e = 0x10001
n = 26737417831000820542131903300607349805884383394154602685589253691058592906354935906805134188533804962897170211026684453428204518730064406526279112572388086653330354347467824800159214965211971007509161988095657918569122896402683130342348264873834798355125176339737540844380018932257326719850776549178097196650971801959829891897782953799819540258181186971887122329746532348310216818846497644520553218363336194855498009339838369114649453618101321999347367800581959933596734457081762378746706371599215668686459906553007018812297658015353803626409606707460210905216362646940355737679889912399014237502529373804288304270563
c = 18343406988553647441155363755415469675162952205929092244387144604220598930987120971635625205531679665588524624774972379282080365368504475385813836796957675346369136362299791881988434459126442243685599469468046961707420163849755187402196540739689823324440860766040276525600017446640429559755587590377841083082073283783044180553080312093936655426279610008234238497453986740658015049273023492032325305925499263982266317509342604959809805578180715819784421086649380350482836529047761222588878122181300629226379468397199620669975860711741390226214613560571952382040172091951384219283820044879575505273602318856695503917257
p = 163515803000813412334620775647541652549604895368507102613553057136855632963322853570924931001138446030409251690646645635800254129997200577719209532684847732809399187385176309169421205833279943214621695444496660249881675974141488357432373412184140130503562295159152949524373214358417567189638680209172147385801
q = 163515803000813412334620775647541652549604895368507102613553057136855632963322853570924931001138446030409251690646645635800254129997200577719209532684847732809399187385176309169421205833279943214621695444496660249881675974141488357432373412184140130503562295159152949524373214358417567189638680209172147385163
phi = (p - 1) * (q - 1)
d = gmpy2.invert(e, phi)
m = pow(c, d, n)
print(libnum.n2s(int(m)))

 flag{p&q_4re_t00_c1o5ed}

 easyrsa7

e = 0x10001
p>>128<<128 = 0xd1c520d9798f811e87f4ff406941958bab8fc24b19a32c3ad89b0b73258ed3541e9ca696fd98ce15255264c39ae8c6e8db5ee89993fa44459410d30a0a8af700ae3aee8a9a1d6094f8c757d3b79a8d1147e85be34fb260a970a52826c0a92b46cefb5dfaf2b5a31edf867f8d34d2222900000000000000000000000000000000
n = 0x79e0bf9b916e59286163a1006f8cefd4c1b080387a6ddb98a3f3984569a4ebb48b22ac36dff7c98e4ebb90ffdd9c07f53a20946f57634fb01f4489fcfc8e402865e152820f3e2989d4f0b5ef1fb366f212e238881ea1da017f754d7840fc38236edba144674464b661d36cdaf52d1e5e7c3c21770c5461a7c1bc2db712a61d992ebc407738fc095cd8b6b64e7e532187b11bf78a8d3ddf52da6f6a67c7e88bef5563cac1e5ce115f3282d5ff9db02278859f63049d1b934d918f46353fea1651d96b2ddd874ec8f1e4b9d487d8849896d1c21fb64029f0d6f47e560555b009b96bfd558228929a6cdf3fb6d47a956829fb1e638fcc1bdfad4ec2c3590dea1ed3
c = 0x1b2b4f9afed5fb5f9876757e959c183c2381ca73514b1918d2f123e386bebe9832835350f17ac439ac570c9b2738f924ef49afea02922981fad702012d69ea3a3c7d1fc8efc80e541ca2622d7741090b9ccd590906ac273ffcc66a7b8c0d48b7d62d6cd6dd4cd75747c55aac28f8be3249eb255d8750482ebf492692121ab4b27b275a0f69b15baef20bf812f3cbf581786128b51694331be76f80d6fb1314d8b280eaa16c767821b9c2ba05dfde5451feef22ac3cb3dfbc88bc1501765506f0c05045184292a75c475486b680f726f44ef8ddfe3c48f75bb03c8d44198ac70e6b7c885f53000654db22c8cee8eb4f65eaeea2da13887aaf53d8c254d2945691

 这里出现了之前没见过的位移运算符,下面对其进行解释

<<左移运算符

将二进制数向左位移,高位溢出丢弃,低位补0

>>右移运算符

 无符号数,右移之后高位补0;有符号数,符号位一起移动,正数高位补0,负数高位补1

 这里p先右移后左移,已知的是p的高位

p的高位攻击 ,运用coppersmith算法,求完整的p

#sage
e = 0x10001
p4= 0xd1c520d9798f811e87f4ff406941958bab8fc24b19a32c3ad89b0b73258ed3541e9ca696fd98ce15255264c39ae8c6e8db5ee89993fa44459410d30a0a8af700ae3aee8a9a1d6094f8c757d3b79a8d1147e85be34fb260a970a52826c0a92b46cefb5dfaf2b5a31edf867f8d34d22229
n = 0x79e0bf9b916e59286163a1006f8cefd4c1b080387a6ddb98a3f3984569a4ebb48b22ac36dff7c98e4ebb90ffdd9c07f53a20946f57634fb01f4489fcfc8e402865e152820f3e2989d4f0b5ef1fb366f212e238881ea1da017f754d7840fc38236edba144674464b661d36cdaf52d1e5e7c3c21770c5461a7c1bc2db712a61d992ebc407738fc095cd8b6b64e7e532187b11bf78a8d3ddf52da6f6a67c7e88bef5563cac1e5ce115f3282d5ff9db02278859f63049d1b934d918f46353fea1651d96b2ddd874ec8f1e4b9d487d8849896d1c21fb64029f0d6f47e560555b009b96bfd558228929a6cdf3fb6d47a956829fb1e638fcc1bdfad4ec2c3590dea1ed3
c = 0x1b2b4f9afed5fb5f9876757e959c183c2381ca73514b1918d2f123e386bebe9832835350f17ac439ac570c9b2738f924ef49afea02922981fad702012d69ea3a3c7d1fc8efc80e541ca2622d7741090b9ccd590906ac273ffcc66a7b8c0d48b7d62d6cd6dd4cd75747c55aac28f8be3249eb255d8750482ebf492692121ab4b27b275a0f69b15baef20bf812f3cbf581786128b51694331be76f80d6fb1314d8b280eaa16c767821b9c2ba05dfde5451feef22ac3cb3dfbc88bc1501765506f0c05045184292a75c475486b680f726f44ef8ddfe3c48f75bb03c8d44198ac70e6b7c885f53000654db22c8cee8eb4f65eaeea2da13887aaf53d8c254d2945691
pbits=1024

kbits=pbits-p4.nbits()
print(p4.nbits())
    
p4 = p4 << kbits
PR.<x> = PolynomialRing(Zmod(n))
f = x + p4
roots = f.small_roots(X=2^kbits, beta=0.4)
if roots:        
    p = p4+int(roots[0]) 
    print("n= "+str(n))
    print("p= "+str(p))
    print("q= "+str(n//p))

 借用以下这位佬对这些函数的解释sagemath的初步学习 | J1Nmu

R.<X> = PolynomialRing(Zmod(n))
#Zmod(n):指定模,定义界限为n的环;Z表示整数;指定模是划定这个环的界限,就是有效的数字只有从0到n,其他的都通过与n取模来保证在0~n这个范围内;Zmod代表这是一个整数域中的n模环
#ZZ:整数环;QQ:有理数环;RR:实数环;CC:复数环
#R:只是一个指针,指向用polynomialring指定的那个环(可以使用任意字符)
#PolynomialRing:这个就是说建立多项式环
#.<X>:指定一个变量的意思(可以用任意字符)

 最后python解一下,也可以继续用sagemath

import gmpy2
import libnum

e = 0x10001
p= 0xd1c520d9798f811e87f4ff406941958bab8fc24b19a32c3ad89b0b73258ed3541e9ca696fd98ce15255264c39ae8c6e8db5ee89993fa44459410d30a0a8af700ae3aee8a9a1d6094f8c757d3b79a8d1147e85be34fb260a970a52826c0a92b46cefb5dfaf2b5a31edf867f8d34d2222900000000000000000000000000000000
n = 0x79e0bf9b916e59286163a1006f8cefd4c1b080387a6ddb98a3f3984569a4ebb48b22ac36dff7c98e4ebb90ffdd9c07f53a20946f57634fb01f4489fcfc8e402865e152820f3e2989d4f0b5ef1fb366f212e238881ea1da017f754d7840fc38236edba144674464b661d36cdaf52d1e5e7c3c21770c5461a7c1bc2db712a61d992ebc407738fc095cd8b6b64e7e532187b11bf78a8d3ddf52da6f6a67c7e88bef5563cac1e5ce115f3282d5ff9db02278859f63049d1b934d918f46353fea1651d96b2ddd874ec8f1e4b9d487d8849896d1c21fb64029f0d6f47e560555b009b96bfd558228929a6cdf3fb6d47a956829fb1e638fcc1bdfad4ec2c3590dea1ed3
c = 0x1b2b4f9afed5fb5f9876757e959c183c2381ca73514b1918d2f123e386bebe9832835350f17ac439ac570c9b2738f924ef49afea02922981fad702012d69ea3a3c7d1fc8efc80e541ca2622d7741090b9ccd590906ac273ffcc66a7b8c0d48b7d62d6cd6dd4cd75747c55aac28f8be3249eb255d8750482ebf492692121ab4b27b275a0f69b15baef20bf812f3cbf581786128b51694331be76f80d6fb1314d8b280eaa16c767821b9c2ba05dfde5451feef22ac3cb3dfbc88bc1501765506f0c05045184292a75c475486b680f726f44ef8ddfe3c48f75bb03c8d44198ac70e6b7c885f53000654db22c8cee8eb4f65eaeea2da13887aaf53d8c254d2945691

p= 147305526294483975294006704928271118039370615054437206404408410848858740256154476278591035455064149531353089038270283281541411458250950936656537283482331598521457077465891874559349872035197398406708610440618635013091489698011474611145014167945729411970665381793142591665313979405475889978830728651549052207969
q= 104447286451939566076017797038369998283019120860149982200602344749600436385708441695230995780714906769626731151644722579252428917819367256207463696691033967714073069435280785389775459281272218174741165454138432242201951151298026448827619971129737985262978620243577274864410816225725466321200461416855483876019
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(libnum.n2s(int(m)))

flag{Kn0wn_Hi9h_Bit5}

 easyrsa8

给了两个文件一个是public.key和flag.enc,考察如何从pem文件中读取公钥和私钥

 -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgTlUlVTKPIIMNZGz82fqFxZ3UlgR
vFSyYIPIHCJxfSzCsQncqlVyt5QiNoI8b0UhrZesJYexcMdmkb57/4OYKphkT8ok
5CFIOwE4CPE036NYe9OMh8e3uNp2VceEsF5C14m87sB4YmHe9qMGJwb9wjb9eA7s
7+h2HehtD5ZOUeHAEQIDAQAB
-----END PUBLIC KEY-----

 在线网站解析或者kaliSSL在线工具-公钥解析

 

e=65537
n=10306247299477991196335954707897189353577589618180446614762218980226685668311143526740800444344046158260556585833057716406703213966249956775927205061731821632025483608182881492214855240841820024816859031176291364212054293818204399157346955465232586109199762630150640804366966946066155685218609638749171632685073

 然后用yafu分解得到p,q,在进行解密


from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
e=65537
n=10306247299477991196335954707897189353577589618180446614762218980226685668311143526740800444344046158260556585833057716406703213966249956775927205061731821632025483608182881492214855240841820024816859031176291364212054293818204399157346955465232586109199762630150640804366966946066155685218609638749171632685073
p = 97
q = 106249972159566919549855203174197828387397831115262336234662051342543151219702510584956705611794290291345944183845955839244363030579896461607496959399297130227066841321473005074379950936513608503266587950271044991876848389878395867601515004796212227929894460104645781488319246866661398816686697306692491058609
d = 4520639064487098151327174667961365516283539231992543792882057746866179464294032313887767783621724945557985447874376379715922452725597335427159165685648572663979688014560576024497341124412004366514253110547369977143739781801290219136578513871764574450392367530817034216313429071683911546803031169524669257788417
rsakey = RSA.importKey(open('public.key','r').read())
privatekey = RSA.construct((n,e,d,p,q))
rsa = PKCS1_OAEP.new(privatekey)
m = rsa.decrypt(open('flag.enc','rb').read())
print(m)

这里我其实一开始并没有解出来,学长告诉因为他是OAEP模式加密填充的,所以常规的解不了,需要用OAEP模式解RSA加密的填充方式 - 知乎

可以看一下这位佬的文章 

相关推荐

  1. 记录4.17-5.6

    2024-01-26 00:12:01       11 阅读
  2. 2024.4.5力扣记录-数组类记录1

    2024-01-26 00:12:01       18 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-01-26 00:12:01       16 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-01-26 00:12:01       16 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-01-26 00:12:01       15 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-01-26 00:12:01       18 阅读

热门阅读

  1. leetcode-颠倒二进制位

    2024-01-26 00:12:01       40 阅读
  2. PyTorch的衍生资源

    2024-01-26 00:12:01       30 阅读
  3. 使用lora接收多个传感器数据方案设计

    2024-01-26 00:12:01       35 阅读
  4. jsx中使用插槽

    2024-01-26 00:12:01       32 阅读
  5. Vue3 Cli5按需导入ElementPlus

    2024-01-26 00:12:01       47 阅读
  6. vue中如何写过滤器

    2024-01-26 00:12:01       34 阅读
  7. Halcon优化模板匹配速度

    2024-01-26 00:12:01       31 阅读
  8. python使用read_sql与to_sql读写数据库

    2024-01-26 00:12:01       30 阅读
  9. swift 进阶知识点

    2024-01-26 00:12:01       28 阅读