J4 - ResNet与DenseNet结合



环境

  • 系统: Linux
  • 语言: Python3.8.10
  • 深度学习框架: Pytorch2.0.0+cu118
  • 显卡:GTX2080TI

模型设计

原始的DenseNet结构图如下:
DenseNet结构图
原始的ResNet结构图如下:
ResNet结构图
经过对比可以发现,ResNet的恒等块是经过了3个Conv层,而DenseNet只有两个,于是将DenseNet的结构修改为ResNet的风格,然后进行测试。

# BN ReLU Conv 顺序的残差块
class ResidualBlock(nn.Sequential):
    def __init__(self, kernel_size, input_size, hidden_size, drop_rate):
        super().__init__()
        
        self.add_module('norm1', nn.BatchNorm2d(input_size)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv2d(input_size, hidden_size, kernel_size=1, bias=False))
        
        self.add_module('norm2', nn.BatchNorm2d(hidden_size)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv2d(hidden_size, hidden_size, kernel_size=kernel_size, padding='same', bias=False))
        
        
        self.add_module('norm3', nn.BatchNorm2d(hidden_size)),
        self.add_module('relu3', nn.ReLU(inplace=True)),
        self.add_module('conv3', nn.Conv2d(hidden_size, input_size, kernel_size=1, bias=False))
        
        self.drop_rate = drop_rate
        
    def forward(self, x):
        features = super().forward(x)
        if self.drop_rate > 0:
            features = F.dropout(features, p = self.drop_rate, training=self.training)
        
        return torch.concat([x, features], 1)
class DenseBlock(nn.Sequential):
    def __init__(self, num_layers, input_size, drop_rate):
        super().__init__()
        for i in range(num_layers):
            layer = ResidualBlock(3, input_size, int(input_size / 4), drop_rate)
            input_size *= 2 # 每次都是上个的堆叠,每次都翻倍
            self.add_module('denselayer%d'%(i+1,), layer)
# 过渡层没有任务变化
class Transition(nn.Sequential):
    def __init__(self, input_size, output_size):
        super().__init__()
        self.add_module('norm', nn.BatchNorm2d(input_size))
        self.add_module('relu', nn.ReLU())
        self.add_module('conv', nn.Conv2d(input_size, output_size, kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(2, stride=2))
# 构建自定义的DenseNet
class DenseNet(nn.Module):
	# 模型的规模小一点,方便测试
    def __init__(self, growth_rate=32, block_config=(2,4,3, 2), 
                 init_size=64, bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
        super().__init__()
        
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(3, init_size, kernel_size=7, stride=2, padding=3, bias=False)),
            ('norm0', nn.BatchNorm2d(init_size)),
            ('relu0', nn.ReLU()),
            ('pool0', nn.MaxPool2d(3, stride=2, padding=1))
        ]))
        
        num_features = init_size
        for i, num_layers in enumerate(block_config):
            block = DenseBlock(num_layers, num_features, drop_rate)
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features*(2**num_layers)
            if i != len(block_config) - 1:
                transition = Transition(num_features, int(num_features*compression_rate))
                self.features.add_module('transition%d' % (i + 1), transition)
                num_features = int(num_features * compression_rate)
                
        self.features.add_module('norm5', nn.BatchNorm2d(num_features))
        self.features.add_module('relu5', nn.ReLU())
        
        self.classifier = nn.Linear(num_features, num_classes)
        
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)
                
    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out

打印一下模型的结构

DenseNet(
  (features): Sequential(
    (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu0): ReLU()
    (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (denseblock1): DenseBlock(
      (denselayer1): ResidualBlock(
        (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
      (denselayer2): ResidualBlock(
        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
    )
    (transition1): Transition(
      (norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock2): DenseBlock(
      (denselayer1): ResidualBlock(
        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
      (denselayer2): ResidualBlock(
        (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
      (denselayer3): ResidualBlock(
        (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
      (denselayer4): ResidualBlock(
        (norm1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
    )
    (transition2): Transition(
      (norm): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock3): DenseBlock(
      (denselayer1): ResidualBlock(
        (norm1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
      (denselayer2): ResidualBlock(
        (norm1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
      (denselayer3): ResidualBlock(
        (norm1): BatchNorm2d(4096, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(4096, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(1024, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
    )
    (transition3): Transition(
      (norm): BatchNorm2d(8192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv): Conv2d(8192, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
    )
    (denseblock4): DenseBlock(
      (denselayer1): ResidualBlock(
        (norm1): BatchNorm2d(4096, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(4096, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(1024, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
      (denselayer2): ResidualBlock(
        (norm1): BatchNorm2d(8192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu1): ReLU(inplace=True)
        (conv1): Conv2d(8192, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (norm2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu2): ReLU(inplace=True)
        (conv2): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=same, bias=False)
        (norm3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu3): ReLU(inplace=True)
        (conv3): Conv2d(2048, 8192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      )
    )
    (norm5): BatchNorm2d(16384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu5): ReLU()
  )
  (classifier): Linear(in_features=16384, out_features=2, bias=True)
)
# 使用torchinfo打印
summary(model, input_size=(32, 3, 224, 224))
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
DenseNet                                 [32, 2]                   --
├─Sequential: 1-1                        [32, 16384, 7, 7]         --
│    └─Conv2d: 2-1                       [32, 64, 112, 112]        9,408
│    └─BatchNorm2d: 2-2                  [32, 64, 112, 112]        128
│    └─ReLU: 2-3                         [32, 64, 112, 112]        --
│    └─MaxPool2d: 2-4                    [32, 64, 56, 56]          --
│    └─DenseBlock: 2-5                   [32, 256, 56, 56]         --
│    │    └─ResidualBlock: 3-1           [32, 128, 56, 56]         4,544
│    │    └─ResidualBlock: 3-2           [32, 256, 56, 56]         17,792
│    └─Transition: 2-6                   [32, 128, 28, 28]         --
│    │    └─BatchNorm2d: 3-3             [32, 256, 56, 56]         512
│    │    └─ReLU: 3-4                    [32, 256, 56, 56]         --
│    │    └─Conv2d: 3-5                  [32, 128, 56, 56]         32,768
│    │    └─AvgPool2d: 3-6               [32, 128, 28, 28]         --
│    └─DenseBlock: 2-7                   [32, 2048, 28, 28]        --
│    │    └─ResidualBlock: 3-7           [32, 256, 28, 28]         17,792
│    │    └─ResidualBlock: 3-8           [32, 512, 28, 28]         70,400
│    │    └─ResidualBlock: 3-9           [32, 1024, 28, 28]        280,064
│    │    └─ResidualBlock: 3-10          [32, 2048, 28, 28]        1,117,184
│    └─Transition: 2-8                   [32, 1024, 14, 14]        --
│    │    └─BatchNorm2d: 3-11            [32, 2048, 28, 28]        4,096
│    │    └─ReLU: 3-12                   [32, 2048, 28, 28]        --
│    │    └─Conv2d: 3-13                 [32, 1024, 28, 28]        2,097,152
│    │    └─AvgPool2d: 3-14              [32, 1024, 14, 14]        --
│    └─DenseBlock: 2-9                   [32, 8192, 14, 14]        --
│    │    └─ResidualBlock: 3-15          [32, 2048, 14, 14]        1,117,184
│    │    └─ResidualBlock: 3-16          [32, 4096, 14, 14]        4,462,592
│    │    └─ResidualBlock: 3-17          [32, 8192, 14, 14]        17,838,080
│    └─Transition: 2-10                  [32, 4096, 7, 7]          --
│    │    └─BatchNorm2d: 3-18            [32, 8192, 14, 14]        16,384
│    │    └─ReLU: 3-19                   [32, 8192, 14, 14]        --
│    │    └─Conv2d: 3-20                 [32, 4096, 14, 14]        33,554,432
│    │    └─AvgPool2d: 3-21              [32, 4096, 7, 7]          --
│    └─DenseBlock: 2-11                  [32, 16384, 7, 7]         --
│    │    └─ResidualBlock: 3-22          [32, 8192, 7, 7]          17,838,080
│    │    └─ResidualBlock: 3-23          [32, 16384, 7, 7]         71,327,744
│    └─BatchNorm2d: 2-12                 [32, 16384, 7, 7]         32,768
│    └─ReLU: 2-13                        [32, 16384, 7, 7]         --
├─Linear: 1-2                            [32, 2]                   32,770
==========================================================================================
Total params: 149,871,874
Trainable params: 149,871,874
Non-trainable params: 0
Total mult-adds (G): 595.94
==========================================================================================
Input size (MB): 19.27
Forward/backward pass size (MB): 5317.85
Params size (MB): 599.49
Estimated Total Size (MB): 5936.61
==========================================================================================

模型效果展示

Epoch: 1, Train_acc:83.8, Train_loss: 0.392, Test_acc: 86.8, Test_loss: 0.324, Lr: 1.00E-04
Epoch: 2, Train_acc:86.8, Train_loss: 0.327, Test_acc: 88.5, Test_loss: 0.291, Lr: 1.00E-04
Epoch: 3, Train_acc:88.1, Train_loss: 0.290, Test_acc: 87.7, Test_loss: 0.415, Lr: 1.00E-04
Epoch: 4, Train_acc:88.1, Train_loss: 0.287, Test_acc: 89.8, Test_loss: 0.249, Lr: 1.00E-04
Epoch: 5, Train_acc:89.7, Train_loss: 0.251, Test_acc: 90.5, Test_loss: 0.235, Lr: 1.00E-04
Epoch: 6, Train_acc:90.2, Train_loss: 0.241, Test_acc: 90.7, Test_loss: 0.253, Lr: 1.00E-04
Epoch: 7, Train_acc:90.6, Train_loss: 0.227, Test_acc: 90.5, Test_loss: 0.236, Lr: 1.00E-04
Epoch: 8, Train_acc:91.5, Train_loss: 0.212, Test_acc: 90.5, Test_loss: 0.228, Lr: 1.00E-04
Epoch: 9, Train_acc:91.7, Train_loss: 0.207, Test_acc: 91.0, Test_loss: 0.247, Lr: 1.00E-04
Epoch:10, Train_acc:92.0, Train_loss: 0.206, Test_acc: 91.2, Test_loss: 0.290, Lr: 1.00E-04
Epoch:11, Train_acc:92.0, Train_loss: 0.203, Test_acc: 88.2, Test_loss: 0.283, Lr: 1.00E-04
Epoch:12, Train_acc:92.5, Train_loss: 0.185, Test_acc: 91.3, Test_loss: 0.232, Lr: 1.00E-04
Epoch:13, Train_acc:93.2, Train_loss: 0.172, Test_acc: 90.7, Test_loss: 0.247, Lr: 1.00E-04
Epoch:14, Train_acc:93.3, Train_loss: 0.177, Test_acc: 90.2, Test_loss: 0.238, Lr: 1.00E-04
Epoch:15, Train_acc:93.8, Train_loss: 0.166, Test_acc: 90.1, Test_loss: 0.357, Lr: 1.00E-04
Epoch:16, Train_acc:94.6, Train_loss: 0.146, Test_acc: 91.2, Test_loss: 0.255, Lr: 1.00E-04
Epoch:17, Train_acc:95.4, Train_loss: 0.119, Test_acc: 90.2, Test_loss: 0.270, Lr: 1.00E-04
Epoch:18, Train_acc:95.5, Train_loss: 0.116, Test_acc: 81.7, Test_loss: 0.752, Lr: 1.00E-04
Epoch:19, Train_acc:95.6, Train_loss: 0.117, Test_acc: 89.3, Test_loss: 0.339, Lr: 1.00E-04
Epoch:20, Train_acc:95.5, Train_loss: 0.120, Test_acc: 91.0, Test_loss: 0.285, Lr: 1.00E-04
Done

训练结果

打印评估结果

总结与心得体会

虽然大幅度的降低了模型的规模,实际的总参数还是数倍于DenseNet121。然而,模型似乎比DenseNet121的泛化性能好不少,训练和验证的Gap比DenseNet121小很多,甚至有的时候验证集上的表现比训练集还好。直接使用ResNet的ResidualBlock实现DenseNet会让参数量迅速的膨胀。接下来再改进,应该从如何压缩DenseNet的参数量的角度来考虑。

相关推荐

最近更新

  1. TCP协议是安全的吗?

    2024-01-20 11:06:04       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-01-20 11:06:04       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-01-20 11:06:04       18 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-01-20 11:06:04       20 阅读

热门阅读

  1. LSTM 模型“实现”整数相加运算

    2024-01-20 11:06:04       31 阅读
  2. Unity中的协程

    2024-01-20 11:06:04       34 阅读
  3. 什么是CSS Sprite,以及如何在页面或网站中使用它

    2024-01-20 11:06:04       28 阅读
  4. vue解决部署文件缓存方式

    2024-01-20 11:06:04       32 阅读
  5. 「HDLBits题解」Counters

    2024-01-20 11:06:04       35 阅读
  6. 服务器防火墙有哪些用处

    2024-01-20 11:06:04       36 阅读
  7. vue3使用element-plus 树组件(el-tree)数据回显

    2024-01-20 11:06:04       29 阅读
  8. 【洛谷 P2084】进制转换 题解(模拟+字符串)

    2024-01-20 11:06:04       32 阅读