向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

向量投影:如何将一个向量投影到矩阵的行向量生成子空间?

前言

本问题是在学习Rosen梯度投影优化方法的时候遇到的问题,主要是对于正交投影矩阵(NT(NNT)-1N)的不理解,因此经过查阅资料,学习了关于向量投影的知识,记录如下。

首先需要了解 子空间和子空间的正交补。相关知识可以查阅本人的另外一篇笔记,核和值域的关系:什么是矩阵的秩?,这篇笔记中是以矩阵列向量的生成子空间为例展开的。

核心公式:

  1. R ( A H ) ∩ N ( A ) = { 0 } R(A^H) \cap N(A)=\{0\} R(AH)N(A)={ 0}
  2. R ( A H ) ⊕ N ( A ) = C m R(A^H) \oplus N(A) = C^m R(AH)N(A)=Cm

其中R(AH)是A的行向量的生成子空间, R ( A H ) = { y ∈ R n ∣ y = A H x , x ∈ C m } R(A^H)=\{y\in R^n|y=A^Hx,x\in C^m\} R(AH)={ yRny=AHx,xCm}

N(A)是A的核子空间, N ( A ) = { x ∣ A x = 0 , x ∈ R n } N(A)=\{x|Ax=0,x\in R^n\} N(A)={ xAx=0,xRn}

正文

所谓向量投影,本质上是期望将Rn空间中的任意一个n维向量,分解称为y1+y2,其中y1属于R(AH),y2属于N(A)。

1、投影矩阵

投影是一种线性变换,要求两次投影变换的结果等于一次投影变换的结果。在信号处理领域当中,一个信号经过两次滤波器和经过一次滤波器的结果是相等的,那么这个滤波器在数学上可抽象成一个投影矩阵。

写成数学公式: P 2 x = P P x = P x P^2x=PPx=Px P2x=PPx=Px。因此要求投影矩阵P是一个方阵。

可证明:R§=R(PH)。通常情况下一个方阵的行空间和列空间是不相同的,二者仅仅是同构关系,即维数相同。

即: R ( P ) ⊕ N ( P ) = C n R(P) \oplus N(P) = C^n R(P)N(P)=Cn

投影分为正交投影和斜投影。二者的区别在于,正交投影矩阵P,R§的正交补=N§,等价于,R§和N§正交。而斜投影矩阵则没有这个性质。

可证明:一个投影矩阵P,是正交投影矩阵的充要条件是:P=PH

举一个简单的例子。

R2空间,向x轴的正交投影P,只能是取一个二维向量的横坐标。R§就是x轴,N§就是y轴,x轴的正交补是y轴。

R2空间,向x轴的斜投影Q,比如是指向东偏南45度➘方向的的投影。R(Q)就是x轴,x轴的正交补是y轴,而N(Q)是沿着东偏南45度➘方向的一维子空间,即N(Q)={ x|x = a(1,-1)T, a \in R}。

2、如何将一个向量投影到行满秩矩阵A的行向量生成子空间?

现在已知一个行满秩矩阵 A m m × n A^{m\times n}_m Amm×n,R(AH)是由A的行向量生成的子空间。由上面的例子,可以猜到,n维欧氏空间向R(AH)的正交投影是唯一的,斜投影是不唯一的(此处考虑典型情况,而非考虑A行列满秩的极端情况)。

现在推导一个由A构成的正交投影矩阵P。

  1. y = y 1 + y 2 , y 1 ∈ R ( A H ) , y 2 ∈ R ⊥ ( A H ) y=y_1+y_2,y_1\in R(A^H),y_2\in R^\perp(A^H) y=y1+y2,y1R(AH),y2R(AH)
  2. P y = P ( y 1 + y 2 ) = y 1 Py=P(y_1+y_2)=y_1 Py=P(y1+y2)=y1
  3. y 1 ∈ R ( A H ) , ∴ y 1 = A H x y_1\in R(A^H),\therefore y_1=A^Hx y1R(AH),y1=AHx,x是一个m维的列向量,即y1可表示为A的行向量的线性组合
  4. y 2 ∈ R ⊥ ( A H ) = N ( A ) , A y 2 = 0 , A y = A A H x y_2\in R^\perp(A^H)=N(A),Ay_2=0,Ay=AA^Hx y2R(AH)=N(A),Ay2=0,Ay=AAHx
  5. x = ( A A H ) − 1 A y , y 1 = [ A H ( A A H ) − 1 A ] y x=(AA^H)^{-1}Ay,y_1 = [A^H(AA^H)^{-1}A]y x=(AAH)1Ay,y1=[AH(AAH)1A]y
  6. P = A H ( A A H ) − 1 A = P H P = A^H(AA^H)^{-1}A=P^H P=AH(AAH)1A=PH

从第5步可以知道为什么需要A行满秩了,只有行满秩的矩阵, y 1 ∈ R ( A H ) , y 1 = A H x y_1\in R(A^H),y_1=A^Hx y1R(AH),y1=AHx,其中x才有唯一解。

至此,我们知道 P = A H ( A A H ) − 1 A P = A^H(AA^H)^{-1}A P=AH(AAH)1A是一个正交投影矩阵,将一个向量投影到A的行向量的生成子空间。

3、关于Rosen梯度投影法

Rosen梯度投影法的可行下降方向: P k = Q ( − g k ) = ( I − N T ( N N T ) − 1 N ) g k P^k = Q(-g^k) = (I-N^T(NN^T)^{-1}N)g^k Pk=Q(gk)=(INT(NNT)1N)gk

Q是一个投影矩阵,并且投向 N T ( N N T ) − 1 N N^T(NN^T)^{-1}N NT(NNT)1N的正交补空间,N是由积极约束的法向量组成的矩阵,因此P是负梯度方向向积极约束的法向量张成的行空间的正交补的投影。从几何上看,就是将负梯度方向投影向了积极约束的超平面的交线上。

需要注意,Rosen梯度投影法的约束条件是一个多面集。

在这里插入图片描述

最近更新

  1. TCP协议是安全的吗?

    2023-12-24 15:18:03       16 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2023-12-24 15:18:03       16 阅读
  3. 【Python教程】压缩PDF文件大小

    2023-12-24 15:18:03       15 阅读
  4. 通过文章id递归查询所有评论(xml)

    2023-12-24 15:18:03       18 阅读

热门阅读

  1. 软件工程-第二章 计算机系统工程

    2023-12-24 15:18:03       30 阅读
  2. 【Python爬虫】第四课 动态爬取数据

    2023-12-24 15:18:03       39 阅读
  3. 排序算法——基数排序

    2023-12-24 15:18:03       38 阅读
  4. C++学习——STL

    2023-12-24 15:18:03       39 阅读
  5. 60 贪心算法解优势洗牌-田忌赛马问题

    2023-12-24 15:18:03       37 阅读
  6. 8.架构设计系列:常用设计模式的实践

    2023-12-24 15:18:03       34 阅读
  7. Python 常用模块re

    2023-12-24 15:18:03       39 阅读
  8. k8s中的namespace及创建方式

    2023-12-24 15:18:03       36 阅读
  9. 单例模式的四种具体写法

    2023-12-24 15:18:03       41 阅读
  10. Python学习9

    2023-12-24 15:18:03       34 阅读
  11. Npm使用技巧

    2023-12-24 15:18:03       40 阅读