Mindspore框架CycleGAN模型实现图像风格迁移|(三)损失函数计算

Mindspore框架:CycleGAN模型实现图像风格迁移算法

Mindspore框架CycleGAN模型实现图像风格迁移|(一)CycleGAN神经网络模型构建
Mindspore框架CycleGAN模型实现图像风格迁移|(二)实例数据集(苹果2橘子)
Mindspore框架CycleGAN模型实现图像风格迁移|(三)损失函数计算
Mindspore框架CycleGAN模型实现图像风格迁移|(四)CycleGAN模型训练
Mindspore框架CycleGAN模型实现图像风格迁移|(五)CycleGAN模型推理与资源下载

1. 损失函数计算

CycleGAN 网络本质上是由两个镜像对称的 GAN 网络组成

在这里插入图片描述
运算流程:
在这里插入图片描述

CycleGAN网络运转流程:图中苹果图片 𝑥 经过生成器 𝐺得到伪橘子 𝑌̂ ,然后将伪橘子 𝑌̂ 结果送进生成器 𝐹又产生苹果风格的结果 𝑥̂ ,最后将生成的苹果风格结果 𝑥̂ 与原苹果图片 𝑥一起计算出循环一致损失。

对生成器 𝐺 及其判别器 𝐷𝑌:
x-> 𝐺(𝑥)
目标损失函数定义为:
在这里插入图片描述
其中 𝐺试图生成看起来与 𝑌 中的图像相似的图像 𝐺(𝑥),而 𝐷𝑌的目标是区分翻译样本 𝐺(𝑥) 和真实样本 𝑦,生成器的目标是最小化这个损失函数以此来对抗判别器。即 在这里插入图片描述

对生成器G到F
x-> 𝐺(𝑥) ->F( 𝐺(𝑥))
在这里插入图片描述

这种循环损失计算,会捕捉这样的直觉,即如果我们从一个域转换到另一个域,然后再转换回来,我们应该到达我们开始的地方。

2.损失函数实现

# GAN网络损失函数,这里最后一层不使用sigmoid函数
loss_fn = nn.MSELoss(reduction='mean')
l1_loss = nn.L1Loss("mean")

def gan_loss(predict, target):
    target = ops.ones_like(predict) * target
    loss = loss_fn(predict, target)
    return loss

生成器网络和判别器网络的优化器:

# 构建生成器优化器
optimizer_rg_a = nn.Adam(net_rg_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_rg_b = nn.Adam(net_rg_b.trainable_params(), learning_rate=0.0002, beta1=0.5)
# 构建判别器优化器
optimizer_d_a = nn.Adam(net_d_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_d_b = nn.Adam(net_d_b.trainable_params(), learning_rate=0.0002, beta1=0.5)

3. 模型前向计算损失的过程

import mindspore as ms

# 前向计算

def generator(img_a, img_b):
    fake_a = net_rg_b(img_b)
    fake_b = net_rg_a(img_a)
    rec_a = net_rg_b(fake_b)
    rec_b = net_rg_a(fake_a)
    identity_a = net_rg_b(img_a)
    identity_b = net_rg_a(img_b)
    return fake_a, fake_b, rec_a, rec_b, identity_a, identity_b

lambda_a = 10.0
lambda_b = 10.0
lambda_idt = 0.5

# 生成器
def generator_forward(img_a, img_b):
    true = Tensor(True, dtype.bool_)
    fake_a, fake_b, rec_a, rec_b, identity_a, identity_b = generator(img_a, img_b)
    loss_g_a = gan_loss(net_d_b(fake_b), true)
    loss_g_b = gan_loss(net_d_a(fake_a), true)
    loss_c_a = l1_loss(rec_a, img_a) * lambda_a
    loss_c_b = l1_loss(rec_b, img_b) * lambda_b
    loss_idt_a = l1_loss(identity_a, img_a) * lambda_a * lambda_idt
    loss_idt_b = l1_loss(identity_b, img_b) * lambda_b * lambda_idt
    loss_g = loss_g_a + loss_g_b + loss_c_a + loss_c_b + loss_idt_a + loss_idt_b
    return fake_a, fake_b, loss_g, loss_g_a, loss_g_b, loss_c_a, loss_c_b, loss_idt_a, loss_idt_b

def generator_forward_grad(img_a, img_b):
    _, _, loss_g, _, _, _, _, _, _ = generator_forward(img_a, img_b)
    return loss_g

# 判别器
def discriminator_forward(img_a, img_b, fake_a, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    loss_d = (loss_d_a + loss_d_b) * 0.5
    return loss_d

def discriminator_forward_a(img_a, fake_a):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    return loss_d_a

def discriminator_forward_b(img_b, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    return loss_d_b

# 保留了一个图像缓冲区,用来存储之前创建的50个图像
pool_size = 50
def image_pool(images):
    num_imgs = 0
    image1 = []
    if isinstance(images, Tensor):
        images = images.asnumpy()
    return_images = []
    for image in images:
        if num_imgs < pool_size:
            num_imgs = num_imgs + 1
            image1.append(image)
            return_images.append(image)
        else:
            if random.uniform(0, 1) > 0.5:
                random_id = random.randint(0, pool_size - 1)

                tmp = image1[random_id].copy()
                image1[random_id] = image
                return_images.append(tmp)

            else:
                return_images.append(image)
    output = Tensor(return_images, ms.float32)
    if output.ndim != 4:
        raise ValueError("img should be 4d, but get shape {}".format(output.shape))
    return output

4.计算梯度和反向传播

from mindspore import value_and_grad

# 实例化求梯度的方法
grad_g_a = value_and_grad(generator_forward_grad, None, net_rg_a.trainable_params())
grad_g_b = value_and_grad(generator_forward_grad, None, net_rg_b.trainable_params())

grad_d_a = value_and_grad(discriminator_forward_a, None, net_d_a.trainable_params())
grad_d_b = value_and_grad(discriminator_forward_b, None, net_d_b.trainable_params())

# 计算生成器的梯度,反向传播更新参数
def train_step_g(img_a, img_b):
    net_d_a.set_grad(False)
    net_d_b.set_grad(False)

    fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib = generator_forward(img_a, img_b)

    _, grads_g_a = grad_g_a(img_a, img_b)
    _, grads_g_b = grad_g_b(img_a, img_b)
    optimizer_rg_a(grads_g_a)
    optimizer_rg_b(grads_g_b)

    return fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib

# 计算判别器的梯度,反向传播更新参数
def train_step_d(img_a, img_b, fake_a, fake_b):
    net_d_a.set_grad(True)
    net_d_b.set_grad(True)

    loss_d_a, grads_d_a = grad_d_a(img_a, fake_a)
    loss_d_b, grads_d_b = grad_d_b(img_b, fake_b)

    loss_d = (loss_d_a + loss_d_b) * 0.5

    optimizer_d_a(grads_d_a)
    optimizer_d_b(grads_d_b)

    return loss_d

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-20 12:06:02       52 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-20 12:06:02       54 阅读
  3. 在Django里面运行非项目文件

    2024-07-20 12:06:02       45 阅读
  4. Python语言-面向对象

    2024-07-20 12:06:02       55 阅读

热门阅读

  1. 游戏外挂的技术实现与五年脚本开发经验分享

    2024-07-20 12:06:02       15 阅读
  2. mysql高阶知识梳理

    2024-07-20 12:06:02       15 阅读
  3. 3.设计模式--创建者模式--工厂模式

    2024-07-20 12:06:02       16 阅读
  4. npm下载的依赖包版本号怎么看

    2024-07-20 12:06:02       16 阅读
  5. 【AI工具基础】—Kylin(一)

    2024-07-20 12:06:02       17 阅读
  6. Unity3D 如何读取策划给定的Excel表格详解

    2024-07-20 12:06:02       19 阅读
  7. PHP学习笔记③

    2024-07-20 12:06:02       14 阅读
  8. YOLO 各版本对比

    2024-07-20 12:06:02       18 阅读
  9. 基于gunicorn+flask+docker模型 高并发部署

    2024-07-20 12:06:02       17 阅读
  10. 跟着GPT学设计模式之模板模式

    2024-07-20 12:06:02       18 阅读
  11. 动态美学:WebKit中CSS转换与动画的魔力

    2024-07-20 12:06:02       17 阅读