Linux——多路复用之select

目录

前言

一、select的认识

二、select的接口

三、select的使用

四、select的优缺点


前言

在前面,我们学习了五种IO模型,对IO有了基本的认识,知道了select效率很高,可以等待多个文件描述符,那他是如何等待的呢?我们又该如何使用呢?

一、select的认识

系统提供select函数来实现多路复用输入/输出模型

  • select系统调用是用来让我们的程序监视多个文件描述符的状态变化的
  • 程序会停在select这里等待,直到被监视的文件描述符有一个或多个发生了状态改变

select只负责等待,不负责拷贝,一次可以等待多个文件描述符。他的作用是让read和write不再阻塞

二、select的接口

select的调用接口如下

参数 1 int nfds:值最大的文件描述符+1。

参数 2 fd_set* readfds:fd_set本质是一张位图。代表select需要关心的读事件

参数 3 fd_set* writefds:代表select需要关心的读事件

参数 4 fd_set* execptfdsfds:代表select需要关心的异常事件,我们暂时不考虑

参数 5 struct timeval* timeout:时间结构体,成员有秒和微秒,代表等待的时间

                                                  {n,m}为阻塞等待n秒m微秒,时间结束后返回

                                                  {0,0}为非阻塞等待

                                                  nullptr为阻塞等待

参数2,3,4类似,都是输入输出型参数,参数5也是输入输出型参数,输出的是剩余时间

以readfds为例

输入时:比特位的位置,表示文件描述符的值,比特位的内容(0/1),用户关心内核,是否关心这个fd的读事件。

输出时:比特位的位置,表示文件描述符的值,比特位的内容(0/1),内核告诉用户,哪些文件fd上的读事件是否就绪

返回值:

  1. ret  >  0 :select等待的多个fd中,已经就需要的fd个数
  2. ret == 0 :select超时返回
  3. ret  <  0 :select出错

同时,fd_set 是特定的类型,我们对其赋值时,是不方便赋值的,因此库里面也给提供的一个函数,方便我们处理。

FD_CLR                    从文件描述符集合 set 中清除文件描述符 fd。

FD_ISSET                 检查文件描述符 fd 是否在文件描述符集合 set 中。

FD_SET                    将文件描述符 fd 添加到文件描述符集合 set 中。

FD_ZERO                 清空文件描述符集合 set,将其所有位都设置为零。

三、select的使用

Log.hpp

#pragma once

#include <iostream>
#include <cstdarg>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <pthread.h>
using namespace std;

enum
{
    Debug = 0,
    Info,
    Warning,
    Error,
    Fatal
};

enum
{
    Screen = 10,
    OneFile,
    ClassFile
};

string LevelToString(int level)
{
    switch (level)
    {
    case Debug:
        return "Debug";
    case Info:
        return "Info";
    case Warning:
        return "Warning";
    case Error:
        return "Error";
    case Fatal:
        return "Fatal";

    default:
        return "Unknown";
    }
}

const int default_style = Screen;
const string default_filename = "Log.";
const string logdir = "log";

class Log
{
public:
    Log(int style = default_style, string filename = default_filename)
        : _style(style), _filename(filename)
    {
        if (_style != Screen)
            mkdir(logdir.c_str(), 0775);
    }

    // 更改打印方式
    void Enable(int style)
    {
        _style = style;
        if (_style != Screen)
            mkdir(logdir.c_str(), 0775);
    }

    // 时间戳转化为年月日时分秒
    string GetTime()
    {
        time_t currtime = time(nullptr);
        struct tm *curr = localtime(&currtime);
        char time_buffer[128];
        snprintf(time_buffer, sizeof(time_buffer), "%d-%d-%d %d:%d:%d",
                 curr->tm_year + 1900, curr->tm_mon + 1, curr->tm_mday, curr->tm_hour, curr->tm_min, curr->tm_sec);
        return time_buffer;
    }

    // 写入到文件中
    void WriteLogToOneFile(const string &logname, const string &message)
    {
        FILE *fp = fopen(logname.c_str(), "a");
        if (fp == nullptr)
        {
            perror("fopen failed");
            exit(-1);
        }
        fprintf(fp, "%s\n", message.c_str());

        fclose(fp);
    }

    // 打印日志
    void WriteLogToClassFile(const string &levelstr, const string &message)
    {
        string logname = logdir;
        logname += "/";
        logname += _filename;
        logname += levelstr;
        WriteLogToOneFile(logname, message);
    }

    pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
    void WriteLog(const string &levelstr, const string &message)
    {
        pthread_mutex_lock(&lock);
        switch (_style)
        {
        case Screen:
            cout << message << endl; // 打印到屏幕中
            break;
        case OneFile:
            WriteLogToClassFile("all", message); // 给定all,直接写到all里
            break;
        case ClassFile:
            WriteLogToClassFile(levelstr, message); // 写入levelstr里
            break;
        default:
            break;
        }
        pthread_mutex_unlock(&lock);
    }

    // 提供接口给运算符重载使用
    void _LogMessage(int level, const char *file, int line, char *rightbuffer)
    {
        char leftbuffer[1024];
        string levelstr = LevelToString(level);
        string currtime = GetTime();
        string  idstr = to_string(getpid());

        snprintf(leftbuffer, sizeof(leftbuffer), "[%s][%s][%s][%s:%d]", levelstr.c_str(), currtime.c_str(), idstr.c_str(), file, line);

        string messages = leftbuffer;
        messages += rightbuffer;
        WriteLog(levelstr, messages);
    }

    // 运算符重载
    void operator()(int level, const char *file, int line, const char *format, ...)
    {
        char rightbuffer[1024];
        va_list args;                                              // va_list 是指针
        va_start(args, format);                                    // 初始化va_list对象,format是最后一个确定的参数
        vsnprintf(rightbuffer, sizeof(rightbuffer), format, args); // 写入到rightbuffer中
        va_end(args);
        _LogMessage(level, file, line, rightbuffer);
    }

    ~Log()
    {
    }

private:
    int _style;
    string _filename;
};

Log lg;

class Conf
{
public:
    Conf()
    {
        lg.Enable(Screen);
    }
    ~Conf()
    {
    }
};

Conf conf;

// 辅助宏
#define lg(level, format, ...) lg(level, __FILE__, __LINE__, format, ##__VA_ARGS__)

Socket.hpp 

#pragma once

#include <iostream>
#include <string>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <cstring>
#include <unistd.h>
using namespace std;
namespace Net_Work
{
    static const int default_backlog = 5;
    static const int default_sockfd = -1;
    using namespace std;

    enum
    {
        SocketError = 1,
        BindError,
        ListenError,
        ConnectError,
    };

    // 封装套接字接口基类
    class Socket
    {
    public:
        // 封装了socket相关方法
        virtual ~Socket() {}
        virtual void CreateSocket() = 0;
        virtual void BindSocket(uint16_t port) = 0;
        virtual void ListenSocket(int backlog) = 0;
        virtual bool ConnectSocket(string &serverip, uint16_t serverport) = 0;
        virtual Socket *AcceptSocket(string *peerip, uint16_t *peerport) = 0;
        virtual int GetSockFd() = 0;
        virtual void SetSockFd(int sockfd) = 0;
        virtual void CloseSocket() = 0;
        virtual bool Recv(string *buff, int size) = 0;
        virtual void Send(string &send_string) = 0;

        // 方法的集中在一起使用
    public:
        void BuildListenSocket(uint16_t port, int backlog = default_backlog)
        {
            CreateSocket();
            BindSocket(port);
            ListenSocket(backlog);
        }

        bool BuildConnectSocket(string &serverip, uint16_t serverport)
        {
            CreateSocket();
            return ConnectSocket(serverip, serverport);
        }

        void BuildNormalSocket(int sockfd)
        {
            SetSockFd(sockfd);
        }
    };

    class TcpSocket : public Socket
    {
    public:
        TcpSocket(int sockfd = default_sockfd)
            : _sockfd(sockfd)
        {
        }
        ~TcpSocket() {}

        void CreateSocket() override
        {
            _sockfd = socket(AF_INET, SOCK_STREAM, 0);
            if (_sockfd < 0)
                exit(SocketError);
        }
        void BindSocket(uint16_t port) override
        {
            int opt = 1;
            setsockopt(_sockfd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt));

            struct sockaddr_in local;
            memset(&local, 0, sizeof(local));
            local.sin_family = AF_INET;
            local.sin_port = htons(port);
            local.sin_addr.s_addr = INADDR_ANY;

            int n = bind(_sockfd, (struct sockaddr *)&local, sizeof(local));
            if (n < 0)
                exit(BindError);
        }
        void ListenSocket(int backlog) override
        {
            int n = listen(_sockfd, backlog);
            if (n < 0)
                exit(ListenError);
        }
        bool ConnectSocket(string &serverip, uint16_t serverport) override
        {
            struct sockaddr_in addr;
            memset(&addr, 0, sizeof(addr));
            addr.sin_family = AF_INET;
            addr.sin_port = htons(serverport);
            // addr.sin_addr.s_addr = inet_addr(serverip.c_str());
            inet_pton(AF_INET, serverip.c_str(), &addr.sin_addr);
            int n = connect(_sockfd, (sockaddr *)&addr, sizeof(addr));

            if (n == 0)
                return true;
            return false;
        }
        Socket *AcceptSocket(string *peerip, uint16_t *peerport) override
        {
            struct sockaddr_in addr;
            socklen_t len = sizeof(addr);
            int newsockfd = accept(_sockfd, (sockaddr *)&addr, &len);
            if (newsockfd < 0)
                return nullptr;

            // *peerip = inet_ntoa(addr.sin_addr);

            // INET_ADDRSTRLEN 是一个定义在头文件中的宏,表示 IPv4 地址的最大长度
            char ip_str[INET_ADDRSTRLEN];
            inet_ntop(AF_INET, &addr.sin_addr, ip_str, INET_ADDRSTRLEN);
            *peerip = ip_str;

            *peerport = ntohs(addr.sin_port);

            Socket *s = new TcpSocket(newsockfd);
            return s;
        }
        int GetSockFd() override
        {
            return _sockfd;
        }
        void SetSockFd(int sockfd) override
        {
            _sockfd = sockfd;
        }
        void CloseSocket() override
        {
            if (_sockfd > default_sockfd)
                close(_sockfd);
        }

        bool Recv(string *buff, int size) override
        {
            char inbuffer[size];
            ssize_t n = recv(_sockfd, inbuffer, size - 1, 0);
            if (n > 0)
            {
                inbuffer[n] = 0;
                *buff += inbuffer;
                return true;
            }
            else
                return false;
        }

        void Send(string &send_string) override
        {
            send(_sockfd, send_string.c_str(),send_string.size(),0);
        }

    private:
        int _sockfd;
        string _ip;
        uint16_t _port;
    };
}

        select只负责等待,不负责处理,最初我们有一个listen_sock需要交给select去管理,当有新链接到来是,listen_sock要去接受新链接,但是接受后,不能立刻read或者write,因为不确定当前事件是否就绪,需要将新链接也交给select管理

        如何将新链接交给select呢?我们得有一个数据结构(这里用的数组),把所有的fd都管理起来,新链接到来时,都可以往这个数组里面添加文件描述符fd。后面select遍历数组,就可以找到需要管理的fd了,但这样,我们需要经常遍历这个数组

  1. 添加时需要遍历找到空再插入
  2. select传参,需要遍历查找最大的文件描述符
  3. select等待成功后调用处理函数时,也需遍历查找就绪的文件描述符

        同时,由于select的事件参数是一个输入输出型参数,因此我们每次都得重新对该参数重新赋值。

如下是SelectServer.hpp的核心代码 

SelectServer.hpp

#pragma once
#include <iostream>
#include <string>
#include <sys/select.h>
#include "Log.hpp"
#include "Socket.hpp"

using namespace Net_Work;
const static int gdefaultport = 8888;
const static int gbacklog = 8;
const static int num = sizeof(fd_set) * 8;

class SelectServer
{
public:
    SelectServer(int port) : _port(port), _listensock(new TcpSocket())
    {
    }
    void HandlerEvent(fd_set rfds)
    {
        for (int i = 0; i < num; i++)
        {
            if (_rfds_array[i] == nullptr)
                continue;

            int fd = _rfds_array[i]->GetSockFd();
            // 判断事件是否就绪
            if (FD_ISSET(fd, &rfds))
            {
                // 读事件分两类,一类是新链接到来,一类是新数据到来
                if (fd == _listensock->GetSockFd())
                {
                    // 新链接到来
                    lg(Info, "get a new link");
                    // 获取连接
                    std::string clientip;
                    uint16_t clientport;
                    Socket *sock = _listensock->AcceptSocket(&clientip, &clientport);
                    if (!sock)
                    {
                        lg(Error, "accept error");
                        return;
                    }
                    lg(Info, "get a client,client info is# %s:%d,fd: %d", clientip.c_str(), clientport, sock->GetSockFd());
                    // 此时获取连接成功了,但是不能直接read write,sockfd仍需要交给select托管 -- 添加到数组_rfds_array中
                    int pos = 0;
                    for (; pos < num; pos++)
                    {
                        if (_rfds_array[pos] == nullptr)
                        {
                            _rfds_array[pos] = sock;
                            lg(Info, "get a new link, fd is : %d", sock->GetSockFd());
                            break;
                        }
                    }
                    if (pos == num)
                    {
                        sock->CloseSocket();
                        delete sock;
                        lg(Warning, "server is full, be carefull...");
                    }
                }
                else
                {
                    // 普通的读事件就绪
                    std::string buffer;
                    bool res = _rfds_array[i]->Recv(&buffer, 1024);
                    if (res)
                    {
                        lg(Info,"client say# %s",buffer.c_str());
                        buffer+=": 你好呀,同志\n";
                        _rfds_array[i]->Send(buffer);
                        buffer.clear();
                    }
                    else
                    {
                        lg(Warning,"client quit ,maybe close or error,close fd: %d",fd);
                        _rfds_array[i]->CloseSocket();
                        delete _rfds_array[i];
                        _rfds_array[i] = nullptr;
                    }
                }
            }
        }
    }
    void InitServer()
    {
        _listensock->BuildListenSocket(_port, gbacklog);
        for (int i = 0; i < num; i++)
        {
            _rfds_array[i] = nullptr;
        }
        _rfds_array[0] = _listensock.get();
    }

    void Loop()
    {
        _isrunning = true;
        // 循环重置select需要的rfds
        while (_isrunning)
        {
            // 不能直接获取新链接,因为accpet可能阻塞
            // 所有的fd,都要交给select,listensock上面新链接,相当于读事件
            // 因此需要将listensock交给select

            // 遍历数组, 1.找最大的fd  2. 合法的fd添加到rfds集合中
            fd_set rfds;
            FD_ZERO(&rfds);
            int max_fd = _listensock->GetSockFd();
            for (int i = 0; i < num; i++)
            {
                if (_rfds_array[i] == nullptr)
                {
                    continue;
                }
                else
                {
                    // 添加fd到集合中
                    int fd = _rfds_array[i]->GetSockFd();
                    FD_SET(fd, &rfds);
                    if (max_fd < fd) // 更新最大值
                    {
                        max_fd = fd;
                    }
                }
            }

            // 定义时间
            struct timeval timeout = {0, 0};

            PrintDebug();

            // rfds是输入输出型参数,rfds是在select调用返回时,不断被修改,所以每次需要重置rfds
            int n = select(max_fd + 1, &rfds, nullptr, nullptr, /*&timeout*/ nullptr);
            switch (n)
            {
            case 0:
                lg(Info, "select timeout...,last time: %u.%u", timeout.tv_sec, timeout.tv_usec);
                break;
            case -1:
                lg(Error, "select error!!!");
            default:
                // 正常就绪的fd
                lg(Info, "select success,begin event handler,last time: %u.%u", timeout.tv_sec, timeout.tv_usec);
                HandlerEvent(rfds); 
                break;
            }
        }
        _isrunning = false;
    }

    void Stop()
    {
        _isrunning = false;
    }

    void PrintDebug()
    {
        std::cout << "current select rfds list is :";
        for (int i = 0; i < num; i++)
        {
            if (_rfds_array[i] == nullptr)
                continue;
            else
                std::cout << _rfds_array[i]->GetSockFd() << " ";
        }
        std::cout << std::endl;
    }

private:
    std::unique_ptr<Socket> _listensock;
    int _port;
    bool _isrunning;

    // select 服务器要被正确设计,需要程序员定义数据结构,来吧所有的fd管理起来
    Socket *_rfds_array[num];
};

 Main.cc

#include <iostream>
#include <memory>
#include "SelectServer.hpp"

void Usage(char* argv)
{
    
    std::cout<<"Usage: \n\t"<<argv<<" port\n"<<std::endl;
}
// ./select_server 8080
int main(int argc,char* argv[])
{
    if(argc!=2)
    {
        Usage(argv[0]);
        return -1;
    }
    uint16_t localport = std::stoi(argv[1]);
    std::unique_ptr<SelectServer> svr = std::make_unique<SelectServer>(localport);
    svr->InitServer();
    svr->Loop();

    return 0;
}

四、select的优缺点

优点:select只负责等待,可以等待多个fd,IO的时候,效率会比较高一些。

缺点:

  1. 由于select是输入输出型参数,因此我们每次都要对select的参数重新设置。
  2. 编写代码时,select因为要使用第三方数组,充满了遍历,这可能会影响select的效率。
  3. 用户到内核,内核到用户,每次select调用和返回,都要对位图重新设置,用户和内核之间,要一直进行数据拷贝。
  4. select让OS在底层遍历需要关心所有的fd,这也会造成效率低下,这也是为何第一个参数需要传入max_fd + 1,就是因为select的底层需要遍历。
  5. fd_set 是系统提供的类型,fd_set大小是固定的,就意味着位图的个数是固定的,也就是select最多能够检测到fd的总数是有上限的。

相关推荐

  1. Linux高级IO——转接select

    2024-07-19 04:42:04       135 阅读
  2. IO复用服务器——select模型和poll模型

    2024-07-19 04:42:04       48 阅读
  3. C#使用Poll/Select实现I/O复用

    2024-07-19 04:42:04       39 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-19 04:42:04       67 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-19 04:42:04       71 阅读
  3. 在Django里面运行非项目文件

    2024-07-19 04:42:04       58 阅读
  4. Python语言-面向对象

    2024-07-19 04:42:04       69 阅读

热门阅读

  1. C语言——函数指针

    2024-07-19 04:42:04       18 阅读
  2. 玩转springboot之springboot启动原理

    2024-07-19 04:42:04       21 阅读
  3. Python(字典)

    2024-07-19 04:42:04       22 阅读
  4. 部署和运维

    2024-07-19 04:42:04       15 阅读
  5. junit mockito Base基类

    2024-07-19 04:42:04       20 阅读
  6. 代码随想录-DAY⑩-二叉树——leetcode 144 | 94 | 145

    2024-07-19 04:42:04       21 阅读
  7. Redis 延迟队列

    2024-07-19 04:42:04       21 阅读
  8. (二)js前端开发中设计模式之单例模式

    2024-07-19 04:42:04       21 阅读
  9. 深度学习落地实战:人脸五官定位检测

    2024-07-19 04:42:04       20 阅读
  10. postman接口测试工具详解

    2024-07-19 04:42:04       21 阅读
  11. 自制数据集处理

    2024-07-19 04:42:04       19 阅读
  12. layui前端开发-记录一次弹窗嵌套表格功能的开发

    2024-07-19 04:42:04       19 阅读
  13. oracle 查询锁 && 解锁

    2024-07-19 04:42:04       20 阅读
  14. 初识Redis

    2024-07-19 04:42:04       17 阅读
  15. redis setnx使用方法

    2024-07-19 04:42:04       17 阅读
  16. 微服务

    微服务

    2024-07-19 04:42:04      17 阅读
  17. perf工具学习材料

    2024-07-19 04:42:04       17 阅读