3-5 提高模型效果:归一化

3-5 提高模型效果:归一化

主目录点这里
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
举例

1. 批量归一化 (Batch Normalization, BN)

应用场景: 通常用于图像分类任务,它在训练期间对每个批次的数据进行归一化,以加速收敛并稳定训练过程。

代码示例:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义一个简单的卷积神经网络使用批量归一化
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.bn1 = nn.BatchNorm2d(32)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
        self.bn2 = nn.BatchNorm2d(64)
        self.fc1 = nn.Linear(64 * 6 * 6, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.bn1(self.conv1(x))
        x = nn.functional.relu(x)
        x = self.bn2(self.conv2(x))
        x = nn.functional.relu(x)
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 64 * 6 * 6)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 初始化模型
model = SimpleCNN()

# 打印模型结构
print(model)

在这里插入图片描述

2. 层归一化 (Layer Normalization, LN)

应用场景: 通常用于文本分类任务或RNN/LSTM网络中,它对每个样本的每一层的所有神经元进行归一化,而不是每个批次的数据。

代码示例:

import torch
import torch.nn as nn

# 定义一个简单的全连接网络使用层归一化
class SimpleFC(nn.Module):
    def __init__(self):
        super(SimpleFC, self).__init__()
        self.fc1 = nn.Linear(20, 50)
        self.ln1 = nn.LayerNorm(50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = self.ln1(self.fc1(x))
        x = nn.functional.relu(x)
        x = self.fc2(x)
        return x

# 初始化模型
model = SimpleFC()

# 打印模型结构
print(model)

在这里插入图片描述

3. 实例归一化 (Instance Normalization, IN)

应用场景: 通常用于生成对抗网络(GAN)和风格迁移任务,它对每个样本的每个通道独立进行归一化,适合处理不同样本之间差异较大的情况。

代码示例:

import torch
import torch.nn as nn

# 定义一个简单的卷积神经网络使用实例归一化
class SimpleINN(nn.Module):
    def __init__(self):
        super(SimpleINN, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.in1 = nn.InstanceNorm2d(32)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
        self.in2 = nn.InstanceNorm2d(64)
        self.fc1 = nn.Linear(64 * 6 * 6, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.in1(self.conv1(x))
        x = nn.functional.relu(x)
        x = self.in2(self.conv2(x))
        x = nn.functional.relu(x)
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 64 * 6 * 6)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 初始化模型
model = SimpleINN()

# 打印模型结构
print(model)

在这里插入图片描述

4. 组归一化 (Group Normalization, GN)

应用场景: 通常用于小批量数据或训练时批量大小非常小的情况。它将通道划分为组,并对每组内的通道进行归一化。

代码示例:

import torch
import torch.nn as nn

# 定义一个简单的卷积神经网络使用组归一化
class SimpleGNN(nn.Module):
    def __init__(self):
        super(SimpleGNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.gn1 = nn.GroupNorm(4, 32)  # 32个通道分成4组,每组8个通道
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
        self.gn2 = nn.GroupNorm(8, 64)  # 64个通道分成8组,每组8个通道
        self.fc1 = nn.Linear(64 * 6 * 6, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.gn1(self.conv1(x))
        x = nn.functional.relu(x)
        x = self.gn2(self.conv2(x))
        x = nn.functional.relu(x)
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 64 * 6 * 6)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 初始化模型
model = SimpleGNN()

# 打印模型结构
print(model)

在这里插入图片描述

后话

这些归一化技术各有特点和应用场景,选择适合的归一化方法可以显著提升模型的训练效果和性能。为了更加体现归一化在模型训练中的效果,我们可以选择一个更复杂的任务和网络结构,比如在 CIFAR-10 数据集上训练一个较深的卷积神经网络(CNN),并比较是否使用归一化的模型的训练和验证性能。

CIFAR-10 是一个包含 10 类的彩色图像数据集。我们将训练两个深度卷积神经网络,一个使用批量归一化(Batch Normalization, BN),另一个不使用。我们将展示它们在训练速度、收敛性和最终精度上的差异。

# -*- coding: UTF-8 -*-
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, random_split


# 定义不使用批量归一化的深度卷积神经网络模型
class DeepCNN_NoBN(nn.Module):
    def __init__(self):
        super(DeepCNN_NoBN, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.fc1 = nn.Linear(256 * 4* 4, 512)
        self.fc2 = nn.Linear(512, 10)

    def forward(self, x):
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv3(x))
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 256 * 4 * 4)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x


# 定义使用批量归一化的深度卷积神经网络模型
class DeepCNN_BN(nn.Module):
    def __init__(self):
        super(DeepCNN_BN, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(64)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(128)
        self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.bn3 = nn.BatchNorm2d(256)
        self.fc1 = nn.Linear(256 * 4 * 4, 512)
        self.fc2 = nn.Linear(512, 10)

    def forward(self, x):
        x = nn.functional.relu(self.bn1(self.conv1(x)))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.bn2(self.conv2(x)))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.bn3(self.conv3(x)))
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 256 * 4 * 4)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x


# 训练和验证函数
def train_and_validate(model, train_loader, val_loader, epochs=20):
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

    for epoch in range(epochs):
        model.train()
        train_loss, correct = 0, 0

        for inputs, targets in train_loader:
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
            _, predicted = outputs.max(1)
            correct += predicted.eq(targets).sum().item()

        train_loss /= len(train_loader)
        train_accuracy = 100. * correct / len(train_loader.dataset)

        model.eval()
        val_loss, correct = 0, 0

        with torch.no_grad():
            for inputs, targets in val_loader:
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = model(inputs)
                loss = criterion(outputs, targets)
                val_loss += loss.item()
                _, predicted = outputs.max(1)
                correct += predicted.eq(targets).sum().item()

        val_loss /= len(val_loader)
        val_accuracy = 100. * correct / len(val_loader.dataset)

        print(f"Epoch: {epoch + 1}, Train Loss: {train_loss:.4f}, Train Acc: {train_accuracy:.2f}%, "
              f"Val Loss: {val_loss:.4f}, Val Acc: {val_accuracy:.2f}%")


def main():
    # CIFAR-10 数据集预处理
    transform = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, padding=4),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ])

    train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
    test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)

    # 分割训练集为训练集和验证集
    train_size = int(0.8 * len(train_dataset))
    val_size = len(train_dataset) - train_size
    train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size])

    # 数据加载器,设置 num_workers 为 0 避免多进程问题
    train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=0)
    val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False, num_workers=0)
    test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=0)

    # 初始化模型
    model_no_bn = DeepCNN_NoBN()
    model_bn = DeepCNN_BN()

    print("Training model without Batch Normalization")
    train_and_validate(model_no_bn, train_loader, val_loader)

    print("\nTraining model with Batch Normalization")
    train_and_validate(model_bn, train_loader, val_loader)


if __name__ == '__main__':
    main()



在这里插入图片描述

相关推荐

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-11 20:34:04       67 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-11 20:34:04       72 阅读
  3. 在Django里面运行非项目文件

    2024-07-11 20:34:04       58 阅读
  4. Python语言-面向对象

    2024-07-11 20:34:04       69 阅读

热门阅读

  1. python如何与前端交互

    2024-07-11 20:34:04       16 阅读
  2. 模型需要从txt中长文本中精准提炼出来文字

    2024-07-11 20:34:04       22 阅读
  3. vue3 学习笔记04 -- axios的使用及封装

    2024-07-11 20:34:04       24 阅读
  4. 大模型融入云平台,信息化走向数智化

    2024-07-11 20:34:04       20 阅读
  5. 开源项目有哪些机遇与挑战?

    2024-07-11 20:34:04       22 阅读
  6. 精通 mysqldumpslow:深度分析 MySQL 慢查询日志

    2024-07-11 20:34:04       22 阅读
  7. 定个小目标之刷LeetCode热题(41)

    2024-07-11 20:34:04       19 阅读
  8. 详细介绍一下TypeScript

    2024-07-11 20:34:04       23 阅读
  9. Ant-Vue——modal对话框

    2024-07-11 20:34:04       23 阅读
  10. windows 修改 npmrc

    2024-07-11 20:34:04       22 阅读
  11. Python图形用户界面的文本文件加密工具

    2024-07-11 20:34:04       26 阅读
  12. [QT入门]树形视图控件

    2024-07-11 20:34:04       22 阅读