yolo-inference多后端+多任务+多算法+多精度模型 框架开发记录(python版)

先贴出github地址,欢迎大家批评指正:https://github.com/taifyang/yolo-inference
不知不觉LZ已经快工作两年了,由于之前的工作内容主要和模型部署相关,想着利用闲暇时间写一些推理方面的经验总结,于是有了这个工程。其实本来也是自己写了玩的,不过已经陆续迭代半年多了,期间也通过借签优秀代码吸收了经验,索性总结一下心得~

1.0 初始版本
1.1 支持多精度模型
1.2 支持tensorrt的cuda前后处理
1.3 支持onnxruntime的int8推理
1.4 onnxruntime推理代码采用cpp风格接口
1.5 采用抽象工厂和单例模式重构代码
1.6 增加cmake编译支持和重构python代码
1.7 增加Linux系统编译支持
2.0 增加yolov8检测器支持
2.1 增加cmake条件编译选项和自动化测试脚本
3.0 增加分类和分割算法支持
3.1 重构代码结构和缺陷修复

初始版本的接口类定义如下:

import cv2
import numpy as np
from enum import Enum
from abc import ABC, abstractclassmethod

...

class Device_Type(Enum):
    CPU = 0
    GPU = 1


class YOLOv5(ABC):
    def infer(self, image_path:str) -> None:
        self.image = cv2.imread(image_path)
        self.result = self.image.copy()
        self.pre_process()
        self.process()
        self.post_process()
        cv2.imwrite("result.jpg", self.result)
        cv2.imshow("result", self.result)
        cv2.waitKey(0)
    
    @abstractclassmethod
    def pre_process(self) -> None:
        pass
    
    @abstractclassmethod
    def process(self) -> None:
        pass    
    
    @abstractclassmethod
    def post_process(self) -> None:
        pass

子类如YOLOv5_ONNXRuntime继承上述类:

import onnxruntime
from yolov5 import *
from utils import *


class YOLOv5_ONNXRuntime(YOLOv5):
    def __init__(self, model_path:str, device_type:Device_Type) -> None:
        super().__init__()
        if device_type == Device_Type.CPU:
            self.onnx_session = onnxruntime.InferenceSession(model_path, providers=['CPUExecutionProvider'])
        if device_type == Device_Type.GPU:
            self.onnx_session = onnxruntime.InferenceSession(model_path, providers=['CUDAExecutionProvider'])
        self.input_name = []
        for node in self.onnx_session.get_inputs():
            self.input_name.append(node.name)
        self.output_name = []
        for node in self.onnx_session.get_outputs():
            self.output_name.append(node.name)
        self.inputs = {}
            
    def pre_process(self) -> None:
        input = letterbox(self.image, input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
        input = input / 255.0
        input = np.expand_dims(input, axis=0)
        for name in self.input_name:
            self.inputs[name] = input
        
    def process(self) -> None:
        self.outputs = self.onnx_session.run(None, self.inputs)
    
    def post_process(self) -> None:
        self.outputs = np.squeeze(self.outputs)
        self.outputs = self.outputs[self.outputs[..., 4] > confidence_threshold]
        classes_scores = self.outputs[..., 5:]     
        boxes = []
        scores = []
        class_ids = []
        for i in range(len(classes_scores)):
            class_id = np.argmax(classes_scores[i])
            self.outputs[i][4] *= classes_scores[i][class_id]
            self.outputs[i][5] = class_id
            if self.outputs[i][4] > score_threshold:
                boxes.append(self.outputs[i][:6])
                scores.append(self.outputs[i][4])
                class_ids.append(self.outputs[i][5])               
        boxes = np.array(boxes)
        boxes = xywh2xyxy(boxes)
        scores = np.array(scores)
        indices = nms(boxes, scores, score_threshold, nms_threshold) 
        boxes = boxes[indices]
        draw(self.result, boxes)

调用demo如下:

from yolov5_onnxruntime import *

yolov5 = YOLOv5_ONNXRuntime(model_path="yolov5n.onnx", device_type=Device_Type.CPU)
yolov5.infer("bus.jpg")

后续支持其他功能后调用demo增加了parse_args解析命令参数,通过importlib导入相应模块,并通过getattr通过类名获取类(反射机制),具体内容如下:

import argparse
import importlib
from yolov5 import *


def parse_args():
    parser = argparse.ArgumentParser('yolov5')
    parser.add_argument('--algo_type', default='ONNXRuntime', type=str, help='ONNXRuntime, OpenCV, OpenVINO, TensorRT')
    parser.add_argument('--model_path', default='yolov5n_fp32.onnx', type=str, help='the path of model')
    parser.add_argument('--device_type',  default='cpu', type=str, help='cpu, gpu')
    parser.add_argument('--model_type',  default='fp32', type=str, help='fp32, fp16, int8')
    return parser.parse_args()


if __name__ == '__main__':
    args = parse_args()
    
    algo_type = args.algo_type
    algo = importlib.import_module('yolov5_' + algo_type.lower()) 
    YOLOv5 = getattr(algo, 'YOLOv5_' + algo_type)
    
    model_path = args.model_path
    
    if args.device_type == 'cpu':
        device_type = Device_Type.CPU
    elif args.device_type == 'gpu':
        device_type = Device_Type.GPU
        
    if args.model_type == 'fp32':
        model_type = Model_Type.FP32
    elif args.model_type == 'fp16':
        model_type = Model_Type.FP16
    elif args.model_type == 'int8':
        model_type = Model_Type.INT8
        
    yolov5 = YOLOv5(model_path, device_type, model_type)
    yolov5.infer("test.mp4")

在3.0版本中由于增加了对分类和分割算法的支持,以onnxruntime框架为例具体实现类如下:

import onnxruntime
from yolo import *
from utils import *


class YOLO_ONNXRuntime(YOLO):
    def __init__(self, algo_type:Algo_Type, device_type:Device_Type, model_type:Model_Type, model_path:str) -> None:
        super().__init__()
        assert os.path.exists(model_path), "model not exists!"
        if device_type == Device_Type.CPU:
            self.onnx_session = onnxruntime.InferenceSession(model_path, providers=['CPUExecutionProvider'])
        elif device_type == Device_Type.GPU:
            self.onnx_session = onnxruntime.InferenceSession(model_path, providers=['CUDAExecutionProvider'])
        self.algo_type = algo_type
        self.model_type = model_type
         
        self.input_name = []
        for node in self.onnx_session.get_inputs(): 
            self.input_name.append(node.name)
        self.output_name = []
        for node in self.onnx_session.get_outputs():
            self.output_name.append(node.name)
        self.input = {}
    
    @abstractclassmethod       
    def pre_process(self) -> None:
        pass
        
    def process(self) -> None:
        self.output = self.onnx_session.run(None, self.input)
    
    @abstractclassmethod         
    def post_process(self) -> None:
        pass


class YOLO_ONNXRuntime_Classification(YOLO_ONNXRuntime):           
    def pre_process(self) -> None:
        if self.algo_type == Algo_Type.YOLOv5:
            crop_size = min(self.image.shape[0], self.image.shape[1])
            left = (self.image.shape[1] - crop_size) // 2
            top = (self.image.shape[0] - crop_size) // 2
            crop_image = self.image[top:(top+crop_size), left:(left+crop_size), ...]
            input = cv2.resize(crop_image, self.input_shape)
            input = input / 255.0
            input = input - np.array([0.406, 0.456, 0.485])
            input = input / np.array([0.225, 0.224, 0.229])
        if self.algo_type == Algo_Type.YOLOv8:
            self.input_shape = (224, 224)
            if self.image.shape[1] > self.image.shape[0]:
                self.image = cv2.resize(self.image, (self.input_shape[0]*self.image.shape[1]//self.image.shape[0], self.input_shape[0]))
            else:
                self.image = cv2.resize(self.image, (self.input_shape[1], self.input_shape[1]*self.image.shape[0]//self.image.shape[1]))
            crop_size = min(self.image.shape[0], self.image.shape[1])
            left = (self.image.shape[1] - crop_size) // 2
            top = (self.image.shape[0] - crop_size) // 2
            crop_image = self.image[top:(top+crop_size), left:(left+crop_size), ...]
            input = cv2.resize(crop_image, self.input_shape)
            input = input / 255.0
        input = input[:, :, ::-1].transpose(2, 0, 1)  #BGR2RGB和HWC2CHW
        if self.model_type == Model_Type.FP32 or self.model_type == Model_Type.INT8:
            input = np.expand_dims(input, axis=0).astype(dtype=np.float32)
        elif self.model_type == Model_Type.FP16:
            input = np.expand_dims(input, axis=0).astype(dtype=np.float16)
        for name in self.input_name:
            self.input[name] = input
            
    def post_process(self) -> None:
        output = np.squeeze(self.output).astype(dtype=np.float32)
        if self.algo_type == Algo_Type.YOLOv5:
            print("class:", np.argmax(output), " scores:", np.exp(np.max(output))/np.sum(np.exp(output)))
        if self.algo_type == Algo_Type.YOLOv8:
            print("class:", np.argmax(output), " scores:", np.max(output))


class YOLO_ONNXRuntime_Detection(YOLO_ONNXRuntime):
    def pre_process(self) -> None:
        input = letterbox(self.image, self.input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1)  #BGR2RGB和HWC2CHW
        input = input / 255.0
        if self.model_type == Model_Type.FP32 or self.model_type == Model_Type.INT8:
            input = np.expand_dims(input, axis=0).astype(dtype=np.float32)
        elif self.model_type == Model_Type.FP16:
            input = np.expand_dims(input, axis=0).astype(dtype=np.float16)
        for name in self.input_name:
            self.input[name] = input
            
    def post_process(self) -> None:
        output = np.squeeze(self.output[0]).astype(dtype=np.float32)
        boxes = []
        scores = []
        class_ids = []
        if self.algo_type == Algo_Type.YOLOv5:
            output = output[output[..., 4] > self.confidence_threshold]
            classes_scores = output[..., 5:85]     
            for i in range(output.shape[0]):
                class_id = np.argmax(classes_scores[i])
                obj_score = output[i][4]
                cls_score = classes_scores[i][class_id]
                output[i][4] = obj_score * cls_score
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i][:6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])   
                    output[i][5:] *= obj_score
        if self.algo_type == Algo_Type.YOLOv8: 
            for i in range(output.shape[0]):
                classes_scores = output[..., 4:]     
                class_id = np.argmax(classes_scores[i])
                output[i][4] = classes_scores[i][class_id]
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i, :6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])                  
        boxes = np.array(boxes)
        boxes = xywh2xyxy(boxes)
        scores = np.array(scores)
        indices = nms(boxes, scores, self.score_threshold, self.nms_threshold) 
        boxes = boxes[indices]
        self.result = draw(self.image, boxes)
        
        
class YOLO_ONNXRuntime_Segmentation(YOLO_ONNXRuntime):
    def pre_process(self) -> None:
        input = letterbox(self.image, self.input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1)  #BGR2RGB和HWC2CHW
        input = input / 255.0
        if self.model_type == Model_Type.FP32 or self.model_type == Model_Type.INT8:
            input = np.expand_dims(input, axis=0).astype(dtype=np.float32)
        elif self.model_type == Model_Type.FP16:
            input = np.expand_dims(input, axis=0).astype(dtype=np.float16)
        for name in self.input_name:
            self.input[name] = input
            
    def post_process(self) -> None:
        output = np.squeeze(self.output[0]).astype(dtype=np.float32)
        boxes = []
        scores = []
        class_ids = []
        preds = []
        if self.algo_type == Algo_Type.YOLOv5:
            output = output[output[..., 4] > self.confidence_threshold]
            classes_scores = output[..., 5:85]     
            for i in range(output.shape[0]):
                class_id = np.argmax(classes_scores[i])
                obj_score = output[i][4]
                cls_score = classes_scores[i][class_id]
                output[i][4] = obj_score * cls_score
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i][:6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])   
                    output[i][5:] *= obj_score
                    preds.append(output[i])
        if self.algo_type == Algo_Type.YOLOv8: 
            for i in range(output.shape[0]):
                classes_scores = output[..., 4:84]     
                class_id = np.argmax(classes_scores[i])
                output[i][4] = classes_scores[i][class_id]
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i, :6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])    
                    preds.append(output[i])           
        boxes = np.array(boxes)
        boxes = xywh2xyxy(boxes)
        scores = np.array(scores)
        indices = nms(boxes, scores, self.score_threshold, self.nms_threshold) 
        boxes = boxes[indices]
        
        masks_in = np.array(preds)[indices][..., -32:]
        proto= np.squeeze(self.output[1]).astype(dtype=np.float32)
        c, mh, mw = proto.shape 
        masks = (1/ (1 + np.exp(-masks_in @ proto.reshape(c, -1)))).reshape(-1, mh, mw)
        
        downsampled_bboxes = boxes.copy()
        downsampled_bboxes[:, 0] *= mw / self.input_shape[0]
        downsampled_bboxes[:, 2] *= mw / self.input_shape[0]
        downsampled_bboxes[:, 3] *= mh / self.input_shape[1]
        downsampled_bboxes[:, 1] *= mh / self.input_shape[1]
    
        masks = crop_mask(masks, downsampled_bboxes)
        self.result = draw(self.image, boxes, masks)

即YOLO基类派生出YOLO_ONNXRuntime等类,再由YOLO_ONNXRuntime类派生一系列具体算法实现子类。由于功能的扩充,此时调用方法变得比较臃肿:

import argparse
import importlib
from yolo import *


def parse_args():
    parser = argparse.ArgumentParser('yolo_inference')
    parser.add_argument('--algo_type', default='YOLOv8', type=str, help='YOLOv5, YOLOv8')
    parser.add_argument('--backend_type', default='TensorRT', type=str, help='ONNXRuntime, OpenCV, OpenVINO, TensorRT')
    parser.add_argument('--task_type', default='Segmentation', type=str, help='Classification, Detection, Segmentation')
    parser.add_argument('--device_type',  default='GPU', type=str, help='CPU, GPU')
    parser.add_argument('--model_type',  default='FP32', type=str, help='FP32, FP16, INT8')
    parser.add_argument('--model_path', default='yolov8n_seg_fp32.engine', type=str, help='the path of model')
    parser.add_argument('--input_path', default="bus.jpg", type=str, help='save result')
    parser.add_argument('--output_path', default="", type=str, help='save result')
    parser.add_argument('--show_result', default=False, type=bool, help='show result')
    parser.add_argument('--save_result', default=True, type=bool, help='save result')
    return parser.parse_args()


if __name__ == '__main__':
    args = parse_args()
    
    backend_type = args.backend_type
    backend = importlib.import_module('yolo_' + backend_type.lower()) 
    yolo = getattr(backend, 'YOLO_' + backend_type + '_' + args.task_type)
    
    model_path = args.model_path
    
    if args.algo_type == 'YOLOv5':
        algo_type = Algo_Type.YOLOv5
    if args.algo_type == 'YOLOv8':
        algo_type = Algo_Type.YOLOv8
        
    if args.task_type == 'Classification':
        task_type = Task_Type.Classification
    if args.task_type == 'Detection':
        task_type = Task_Type.Detection
    if args.task_type == 'Segmentation':
        task_type = Task_Type.Segmentation  
        
    if args.device_type == 'CPU':
        device_type = Device_Type.CPU
    if args.device_type == 'GPU':
        device_type = Device_Type.GPU
        
    if args.model_type == 'FP32':
        model_type = Model_Type.FP32
    if args.model_type == 'FP16':
        model_type = Model_Type.FP16
    if args.model_type == 'INT8':
        model_type = Model_Type.INT8
    
    show_result = args.show_result and (task_type == Task_Type.Detection or task_type == Task_Type.Segmentation)
    save_result = args.save_result and (task_type == Task_Type.Detection or task_type == Task_Type.Segmentation)
    
    args.output_path = "./result/"+str(args.algo_type)+"_"+str(args.backend_type)+"_"+str(args.task_type)+"_"+str(args.device_type)+"_"+str(args.model_type)+".jpg"
    
    yolo = yolo(algo_type, device_type, model_type, model_path)
    yolo.infer(args.input_path, args.output_path, show_result, save_result)

3.1版本中,借签了https://github.com/ultralytics/ultralytics的做法,项目层级划分如下:
在这里插入图片描述
即将不同推理后端封装入算法包,此时yolo.py内容如下:

import os
import cv2
import time
from enum import Enum
import backends
    

class YOLO:  
    def __init__(self) -> None:
        super().__init__()
        self.score_threshold = 0.2
        self.nms_threshold = 0.5
        self.confidence_threshold = 0.2  
        self.input_shape = (640, 640) 
        
    def task_map(self):
        return {
            'ONNXRuntime':{
                'Classify':backends.ONNXRuntime.YOLO_ONNXRuntime_Classify,
                'Detect':backends.ONNXRuntime.YOLO_ONNXRuntime_Detect,
                'Segment':backends.ONNXRuntime.YOLO_ONNXRuntime_Segment,
            },
            'OpenCV':{
                'Classify':backends.OpenCV.YOLO_OpenCV_Classify,
                'Detect':backends.OpenCV.YOLO_OpenCV_Detect,
                #'Segment':tasks.OpenCV.YOLO_OpenCV_Segment,
            },
            'OpenVINO':{
                'Classify':backends.OpenVINO.YOLO_OpenVINO_Classify,
                'Detect':backends.OpenVINO.YOLO_OpenVINO_Detect,
                'Segment':backends.OpenVINO.YOLO_OpenVINO_Segment,
            },
            'TensorRT':{
                'Classify':backends.TensorRT.YOLO_TensorRT_Classify,
                'Detect':backends.TensorRT.YOLO_TensorRT_Detect,
                'Segment':backends.TensorRT.YOLO_TensorRT_Segment,
            },
        }
    
    def infer(self, input_path:str, output_path:str, show_result:bool, save_result:bool) -> None:
        assert os.path.exists(input_path), 'input not exists!'
        if input_path.endswith('.bmp') or input_path.endswith('.jpg') or input_path.endswith('.png'):
            self.image = cv2.imread(input_path)
            self.pre_process()
            self.process()
            self.post_process()
            if save_result and output_path!='':
                cv2.imwrite(output_path, self.result)
            if show_result:
                cv2.imshow('result', self.result)
                cv2.waitKey(0)
        elif input_path.endswith('.mp4'):
            cap = cv2.VideoCapture(input_path)
            start = time.time()
            if save_result and output_path!='':
                fourcc = cv2.VideoWriter_fourcc(*'XVID')
                wri = cv2.VideoWriter(output_path, fourcc, 30.0, (1280,720))
            while True:
                ret, self.image  = cap.read()
                if not ret:
                    break
                self.result = self.image.copy()
                self.pre_process()
                self.process()
                self.post_process()
                if show_result:
                    cv2.imshow('result', self.result)
                    cv2.waitKey(1)
                if save_result and output_path!='':
                    wri.write(self.result)
            end = time.time()
            print((end-start)*1000, 'ms')                  

即通过task_map接口返回具体算法类的实现。其同级的__init__.py文件内容如下:

from backends import ONNXRuntime, OpenCV, OpenVINO, TensorRT

__all__ = 'ONNXRuntime', 'OpenCV', 'OpenVINO', 'TensorRT'

用来初始化ONNXRuntime,OpenCV,OpenVINO,TensorRT四个package。ONNXRuntime文件夹下的yolo_onnxruntime.py内容为:

import onnxruntime
from backends.yolo import *
from backends.utils import *


class YOLO_ONNXRuntime(YOLO):
    def __init__(self, algo_type:str, device_type:str, model_type:str, model_path:str) -> None:
        super().__init__()
        assert os.path.exists(model_path), "model not exists!"
        if device_type == 'CPU':
            self.onnx_session = onnxruntime.InferenceSession(model_path, providers=['CPUExecutionProvider'])
        elif device_type == 'GPU':
            self.onnx_session = onnxruntime.InferenceSession(model_path, providers=['CUDAExecutionProvider'])
        self.algo_type = algo_type
        self.model_type = model_type
         
        self.input_name = []
        for node in self.onnx_session.get_inputs(): 
            self.input_name.append(node.name)
        self.output_name = []
        for node in self.onnx_session.get_outputs():
            self.output_name.append(node.name)
        self.input = {}
        
    def process(self) -> None:
        self.output = self.onnx_session.run(None, self.input)


class YOLO_ONNXRuntime_Classify(YOLO_ONNXRuntime):           
    def pre_process(self) -> None:
        if self.algo_type == 'YOLOv5':
            crop_size = min(self.image.shape[0], self.image.shape[1])
            left = (self.image.shape[1] - crop_size) // 2
            top = (self.image.shape[0] - crop_size) // 2
            crop_image = self.image[top:(top+crop_size), left:(left+crop_size), ...]
            input = cv2.resize(crop_image, self.input_shape)
            input = input / 255.0
            input = input - np.array([0.406, 0.456, 0.485])
            input = input / np.array([0.225, 0.224, 0.229])
        if self.algo_type == 'YOLOv8':
            self.input_shape = (224, 224)
            if self.image.shape[1] > self.image.shape[0]:
                self.image = cv2.resize(self.image, (self.input_shape[0]*self.image.shape[1]//self.image.shape[0], self.input_shape[0]))
            else:
                self.image = cv2.resize(self.image, (self.input_shape[1], self.input_shape[1]*self.image.shape[0]//self.image.shape[1]))
            crop_size = min(self.image.shape[0], self.image.shape[1])
            left = (self.image.shape[1] - crop_size) // 2
            top = (self.image.shape[0] - crop_size) // 2
            crop_image = self.image[top:(top+crop_size), left:(left+crop_size), ...]
            input = cv2.resize(crop_image, self.input_shape)
            input = input / 255.0
        input = input[:, :, ::-1].transpose(2, 0, 1)  #BGR2RGB和HWC2CHW
        if self.model_type == 'FP32' or self.model_type == 'INT8':
            input = np.expand_dims(input, axis=0).astype(dtype=np.float32)
        elif self.model_type == 'FP16':
            input = np.expand_dims(input, axis=0).astype(dtype=np.float16)
        for name in self.input_name:
            self.input[name] = input
            
    def post_process(self) -> None:
        output = np.squeeze(self.output).astype(dtype=np.float32)
        if self.algo_type == 'YOLOv5':
            print("class:", np.argmax(output), " scores:", np.exp(np.max(output))/np.sum(np.exp(output)))
        if self.algo_type == 'YOLOv8':
            print("class:", np.argmax(output), " scores:", np.max(output))


class YOLO_ONNXRuntime_Detect(YOLO_ONNXRuntime):
    def pre_process(self) -> None:
        input = letterbox(self.image, self.input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1)  #BGR2RGB和HWC2CHW
        input = input / 255.0
        if self.model_type == 'FP32' or self.model_type == 'INT8':
            input = np.expand_dims(input, axis=0).astype(dtype=np.float32)
        elif self.model_type == 'FP16':
            input = np.expand_dims(input, axis=0).astype(dtype=np.float16)
        for name in self.input_name:
            self.input[name] = input
            
    def post_process(self) -> None:
        output = np.squeeze(self.output[0]).astype(dtype=np.float32)
        boxes = []
        scores = []
        class_ids = []
        if self.algo_type == 'YOLOv5':
            output = output[output[..., 4] > self.confidence_threshold]
            classes_scores = output[..., 5:85]     
            for i in range(output.shape[0]):
                class_id = np.argmax(classes_scores[i])
                obj_score = output[i][4]
                cls_score = classes_scores[i][class_id]
                output[i][4] = obj_score * cls_score
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i][:6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])   
                    output[i][5:] *= obj_score
        if self.algo_type == 'YOLOv8': 
            for i in range(output.shape[0]):
                classes_scores = output[..., 4:]     
                class_id = np.argmax(classes_scores[i])
                output[i][4] = classes_scores[i][class_id]
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i, :6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])                  
        boxes = np.array(boxes)
        boxes = xywh2xyxy(boxes)
        scores = np.array(scores)
        indices = nms(boxes, scores, self.score_threshold, self.nms_threshold) 
        boxes = boxes[indices]
        self.result = draw(self.image, boxes)
        
        
class YOLO_ONNXRuntime_Segment(YOLO_ONNXRuntime):
    def pre_process(self) -> None:
        input = letterbox(self.image, self.input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1)  #BGR2RGB和HWC2CHW
        input = input / 255.0
        if self.model_type == 'FP32' or self.model_type == 'INT8':
            input = np.expand_dims(input, axis=0).astype(dtype=np.float32)
        elif self.model_type == 'FP16':
            input = np.expand_dims(input, axis=0).astype(dtype=np.float16)
        for name in self.input_name:
            self.input[name] = input
            
    def post_process(self) -> None:
        output = np.squeeze(self.output[0]).astype(dtype=np.float32)
        boxes = []
        scores = []
        class_ids = []
        preds = []
        if self.algo_type == 'YOLOv5':
            output = output[output[..., 4] > self.confidence_threshold]
            classes_scores = output[..., 5:85]     
            for i in range(output.shape[0]):
                class_id = np.argmax(classes_scores[i])
                obj_score = output[i][4]
                cls_score = classes_scores[i][class_id]
                output[i][4] = obj_score * cls_score
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i][:6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])   
                    output[i][5:] *= obj_score
                    preds.append(output[i])
        if self.algo_type == 'YOLOv8': 
            for i in range(output.shape[0]):
                classes_scores = output[..., 4:84]     
                class_id = np.argmax(classes_scores[i])
                output[i][4] = classes_scores[i][class_id]
                output[i][5] = class_id
                if output[i][4] > self.score_threshold:
                    boxes.append(output[i, :6])
                    scores.append(output[i][4])
                    class_ids.append(output[i][5])    
                    preds.append(output[i])           
        boxes = np.array(boxes)
        boxes = xywh2xyxy(boxes)
        scores = np.array(scores)
        indices = nms(boxes, scores, self.score_threshold, self.nms_threshold) 
        boxes = boxes[indices]
        
        masks_in = np.array(preds)[indices][..., -32:]
        proto= np.squeeze(self.output[1]).astype(dtype=np.float32)
        c, mh, mw = proto.shape 
        masks = (1/ (1 + np.exp(-masks_in @ proto.reshape(c, -1)))).reshape(-1, mh, mw)
        
        downsampled_bboxes = boxes.copy()
        downsampled_bboxes[:, 0] *= mw / self.input_shape[0]
        downsampled_bboxes[:, 2] *= mw / self.input_shape[0]
        downsampled_bboxes[:, 3] *= mh / self.input_shape[1]
        downsampled_bboxes[:, 1] *= mh / self.input_shape[1]
    
        masks = crop_mask(masks, downsampled_bboxes)
        self.result = draw(self.image, boxes, masks)

init.py文件内容为:

from backends.ONNXRuntime.yolo_onnxruntime import YOLO_ONNXRuntime_Classify, YOLO_ONNXRuntime_Detect, YOLO_ONNXRuntime_Segment

__all__ = "YOLO_ONNXRuntime_Classify", "YOLO_ONNXRuntime_Detect", "YOLO_ONNXRuntime_Segment",

来初始化具体算法实现子类。

相关推荐

  1. Python---案例-任务TCP服务程序开发

    2024-06-14 04:22:03       60 阅读
  2. Python---静态Web服务器-任务

    2024-06-14 04:22:03       62 阅读
  3. 【黑马程序员】Python任务

    2024-06-14 04:22:03       37 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-06-14 04:22:03       94 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-06-14 04:22:03       100 阅读
  3. 在Django里面运行非项目文件

    2024-06-14 04:22:03       82 阅读
  4. Python语言-面向对象

    2024-06-14 04:22:03       91 阅读

热门阅读

  1. windows安装SQLyog

    2024-06-14 04:22:03       42 阅读
  2. 判断是否是平衡二叉树--c++【做题记录】

    2024-06-14 04:22:03       31 阅读
  3. 警示:AGI竞赛之未来十年

    2024-06-14 04:22:03       25 阅读
  4. 基于 Vue 3 封装一个 ECharts 图表组件

    2024-06-14 04:22:03       29 阅读
  5. Page的基本使用及其原理

    2024-06-14 04:22:03       28 阅读
  6. 【杂记-浅谈MAC地址】

    2024-06-14 04:22:03       24 阅读
  7. vivado HW_SIO_PLL

    2024-06-14 04:22:03       27 阅读
  8. C++和Python相互调用(1)

    2024-06-14 04:22:03       27 阅读
  9. leetcode hot100 之 编辑距离

    2024-06-14 04:22:03       31 阅读
  10. 115. 素数筛选

    2024-06-14 04:22:03       38 阅读