iOS ------ 对象的本质

一,OC对象本质,用clang编译main.m

OC对象结构都是通过基础的C/C++结构体实现的,我们通过创建OC文件及对象,将OC对象转化为C++文件来探寻OC对象的本质。

代码:


@interface HTPerson : NSObject
@property(nonatomic,strong)NSString *name;
@end

@implementation HTPerson

@end
int main(int argc, const char * argv[]) {
   @autoreleasepool {
       HTPerson *person = [[HTPerson alloc]init];
      
       NSLog(@"Hello, World!");
   }
   return 0;
}

通过命令行将OC的main文件转化为C++文件

我们通过命令行将OC的mian.m文件转化为c++文件。

复制代码clang -rewrite-objc main.m -o main.cpp // 这种方式没有指定架构例如arm64架构 其中cpp代表(c plus plus)
生成 main.cpp

我们可以指定架构模式的命令行,使用xcode工具 xcrun

xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m -o main-arm64.cpp 
生成 main-arm64.cpp 
#ifndef _REWRITER_typedef_HTPerson
#define _REWRITER_typedef_HTPerson
typedef struct objc_object HTPerson;
typedef struct {} _objc_exc_HTPerson;
#endif

extern "C" unsigned long OBJC_IVAR_$_HTPerson$_name;
struct HTPerson_IMPL {
	struct NSObject_IMPL NSObject_IVARS;
	NSString *_name;
};

// @property (nonatomic, strong) NSString* name;
/* @end */

// @implementation HTPerson

static NSString * _I_HTPerson_name(HTPerson * self, SEL _cmd) { return (*(NSString **)((char *)self + OBJC_IVAR_$_HTPerson$_name)); }
static void _I_HTPerson_setName_(HTPerson * self, SEL _cmd, NSString *name) { (*(NSString **)((char *)self + OBJC_IVAR_$_HTPerson$_name)) = name; }
// @end
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        HTPerson* person = ((HTPerson *(*)(id, SEL))(void *)objc_msgSend)((id)((HTPerson *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("HTPerson"), sel_registerName("alloc")), sel_registerName("init"));
    }
    return 0;
}

可以观察到HTPerson类的本质就是结构体(struct

struct HTPerson_IMPL {
	struct NSObject_IMPL NSObject_IVARS;
	NSString *_name;
};

struct NSObject_IMPL NSObject_IVARS是继承于父类NSObject的实例变量。这种方法模拟了类继承的行为,确保HTPerson对象不仅拥有自己的实例变量_name,还继承了NSOBject的所有实例变量。

typedef struct objc_class *Class;
struct NSObject_IMPL {
	Class isa;
};

我们发现class其实就是一个指针,isa是一个指向类对象的指针,每个OC对象都有一个isa指针,指向它的类

extern "C" unsigned long OBJC_IVAR_$_HTPerson$_name;

这声明了一个全局变量用于_name实例变量在HTPerson对象中的偏移量。编译器使用这个变量来访问对象的实例变量。

下面是HTPerson属性的set,get方法的底层实现

static NSString * _I_HTPerson_name(HTPerson * self, SEL _cmd) { return (*(NSString **)((char *)self + OBJC_IVAR_$_HTPerson$_name)); }
static void _I_HTPerson_setName_(HTPerson * self, SEL _cmd, NSString *name) { (*(NSString **)((char *)self + OBJC_IVAR_$_HTPerson$_name)) = name; }

在set、get方法的底层实现中 OBJC_IVAR_$_SMPerson$_name 就是属性对应的内存地址的偏移量, 系统通过每个属性的偏移量,来实现对其赋值和取值。

typedef struct objc_object HTPerson;

objc_object 结构体类型定义为HTPerson类型

  • objc_object:包含一个指向类的指针isa的结构体,所有OC对象都继承自它。
typedef struct objc_class *Class;
struct objc_object {
    Class _Nonnull isa __attribute__((deprecated));
};
  • HTPerson:这行代码定义了一个新的类型名 HTPerson,它是 struct objc_object 类型的别名。

二,OC对象在内存中的布局

以NSObject为例,点击NSObject进入发现NSObject的内部实现

@interface NSObject <NSObject> {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wobjc-interface-ivars"
    Class isa  OBJC_ISA_AVAILABILITY;
#pragma clang diagnostic pop
}
@end

转化为c语言函数就是一个结构体

struct NSObject_IMPL {
    Class isa;
};

这个结构体只有一个成员isa指针,而指针在64位架构中占8个字节,也就是说一个NSObject对象所暂用的内存是8个字节。对于OC对象还有一些方法,这些方法也是占用内存的,但这些方法所占用的空间并不在NSObject对象中

探寻NSObject对象在内存中如何体现的

NSObject *objc = [[NSObject alloc] init];

上述一段代码中系统为NSObject对象分配8个字节的内存空间,用来存放一个成员isa指针。那么isa指针这个变量的地址就是结构体的起始地址,也就是NSObjcet对象的地址。
假设isa的地址为0x100400110,那么上述代码分配存储空间给NSObject对象,然后将存储空间的地址赋值给objc指针。objc存储的就是isa的地址。objc指向内存中NSObject对象地址,即指向内存中的结构体,也就是isa的位置。

自定义类的内部实现

#import <Foundation/Foundation.h>
#import <objc/runtime.h>

@interface HTPerson : NSObject
@property (nonatomic, strong) NSString* name;
@property (nonatomic) int number;
@property (nonatomic, strong) NSString* phone;
@end

@implementation HTPerson

@end
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        HTPerson* person = [[HTPerson alloc] init];
        person.name = @"name";
        person.number = 1;
        person.phone = @"123";
        NSLog(@"%zd", class_getInstanceSize([HTPerson class]));
        
    }
    return 0;
}

struct HTPerson_IMPL {
	struct NSObject_IMPL NSObject_IVARS;
	int _number;
	NSString *_name;
	NSString *_phone;
};

NSObject_IMPL内部其实就是Class isa 那么我们假设 struct NSObject_IMPL NSObject_IVARS; 等价于 Class isa;
所以可以转化为

struct HTPerson_IMPL {
	Class *isa;
	int _number;
	NSString *_name;
	NSString *_phone;
};

因此此结构体占用多少存储空间,对象就占用多少存储空间。输出结果为32.

现在我们来计算总的内存大小,考虑内存对齐:

  • NSObject_IVARS(假设它包含一个指针):8字节
  • _number:4字节
    对齐填充:4字节(因为接下来是指针,按8字节对齐)
  • _name:8字节
  • _phone:8字节

所以OC对象的内存布局也遵守结构体的内存对齐规则。

  1. 前面的地址必须是后面的地址正数倍,不是就补齐。
  2. 整个Struct的地址必须是最大字节的整数倍。

复杂的继承关系

/* Person */
@interface Person : NSObject
{
    int _age;
}
@end

@implementation Person
@end

/* Student */
@interface Student : Person
{
    int _no;
}
@end

@implementation Student
@end

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        
        NSLog(@"%zd  %zd",
              class_getInstanceSize([Person class]),
              class_getInstanceSize([Student class])
              );
    }
    return 0;
}

画出内存图例
在这里插入图片描述

我们发现只要继承自NSObject的对象,那么底层结构体内一定有一个isa指针。
上面的输出结果为16,16。

person对象只使用了12个字节,但是因为内存对齐的原因,使person对象也占用16个字节。对于student对象,包含了person对象的结构体实现,和一个int类型的_no成员变量,同样isa指针8个字节,_age成员变量4个字节,_no成员变量4个字节,根据内存对齐原则student对象占据的内存空间也是16个字节。

类的本质

OC的类信息存放在哪里? OC对象主要可以分为三种

  1. instance对象(实例对象)
  2. class对象(类对象)
  3. meta-class对象(元类对象)

instance对象就是通过类alloc出来的对象,每次调用alloc都会产生新的instance对象。

NSObjcet *object1 = [[NSObjcet alloc] init];
NSObjcet *object2 = [[NSObjcet alloc] init];

object1object2都是NSObjectinstace对象(实例对象),但他们是不同的两个对象,并且分别占据着两块不同的内存。 instance对象在内存中存储的信息包括isa指针其他成员变量

在这里插入图片描述

class对象 我们通过class方法或runtime方法得到一个class对象。class对象也就是类对象

Class objectClass1 = [object1 class];//获取类对象
Class objectClass2 = [NSObject class];//获取元类

// runtime
Class objectClass4 = object_getClass(object1);

每一个类在内存中有且只有一个对象
class对象在内存中存储的信息主要包括

  1. isa指针
  2. superclass指针
  3. 类的属性信息(@property),类的成员变量信息(ivar)
  4. 类的对象方法信息(instance method),类的协议信息(protocol)

instance对象中的成员变量是具体对象的属性,每个实例都有自己的一份副本,是成员变量具体的值。创建实例对象的时候要为成员变量赋值。而类对象中的类的成员变量信息与类本身关联,而不是与类的每个实例关联。

meta_class对象 每个类在内存中有且只有一个meta-class对象。在内存中存储的信息主要包括

  1. isa指针
  2. superclass指针
  3. 类的类方法的信息(class method)

meta-class对象class对象的内存结构是一样的,所以meta-class中也有类的属性信息,类的对象方法信息等成员变量,但是其中的值可能是空的

对象的isa指针的指向

  • 当对象调用实例方法的时候,实例方法信息是存储在class类对象中的,instance的isa指向class,通过instance的isa找到class,最后找到对象方法的实现进行调用。
  • 当类对象调用类方法的时候,类方法是存储在meta-class元类对象中的。class类对象的isa指针就指向元类对象,通过class的isa找到meta-class,最后找到类方法的实现进行调用

在这里插入图片描述

  • 当对象调用其父类对象方法的时候,此时就需要使用到class类对象superclass指针。当Student的instance对象要调用Person的对象方法时,会先通过isa找到Student的class,然后通过superclass找到Person的class,最后找到对象方法的实现进行调用。
  • 当类对象调用父类的类方法时,当Student的class要调用Person的类方法时,会先通过isa找到Student的meta-class,然后通过superclass找到Person的meta-class,最后找到类方法的实现进行调用

在这里插入图片描述

不管是类对象还是元类对象,类型都是Classclassmete-class的底层都是objc_class结构体的指针,内存中就是结构体

struct objc_class : objc_object {
    ...省略无关代码
    // Class ISA;  //ISA(从objc_object继承过来的)指向元类
    Class superclass;  //指向其父类
    cache_t cache;  //缓存

    class_data_bits_t bits;  //类的数据

    class_rw_t *data() const {
      return bits.data();
    }
    void setData(class_rw_t *newData) {
      bits.setData(newData);
    }

    ...省略无关代码
}  

这个结构体继承 objc_object 并且结构体内有一些函数,因为这是c++结构体,在c上做了扩展,因此结构体中可以包含函数。

前面讲到bjc_object中有一个isa指针,那么objc_class继承objc_object,也就同样拥有一个isa指针。

类中存储的类的成员变量信息,实例方法,属性名等这些信息在哪里呢。

    class_data_bits_t bits;  //类的数据

    class_rw_t *data() const {
      return bits.data();
    }
    void setData(class_rw_t *newData) {
      bits.setData(newData);
    }

obj_class中有class_rw_t类型的bits.data的读写
我们来到class_rw_t中,class_rw_t 结构体是 Objective-C 运行时中用于描述类的可读写数据的结构体。它包含了类的动态数据,可以在运行时修改。这些数据包括标志、方法列表、属性列表、协议列表等。

struct class_rw_t {
    // Be warned that Symbolication knows the layout of this structure.
    uint32_t flags;
    uint16_t witness;
#if SUPPORT_INDEXED_ISA
    uint16_t index;
#endif

    explicit_atomic<uintptr_t> ro_or_rw_ext;

    Class firstSubclass;
    Class nextSiblingClass;

private:
    using ro_or_rw_ext_t = objc::PointerUnion<const class_ro_t, class_rw_ext_t, PTRAUTH_STR("class_ro_t"), PTRAUTH_STR("class_rw_ext_t")>;

    const ro_or_rw_ext_t get_ro_or_rwe() const {
        return ro_or_rw_ext_t{ro_or_rw_ext};
    }

    void set_ro_or_rwe(const class_ro_t *ro) {
        ro_or_rw_ext_t{ro, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_relaxed);
    }

    void set_ro_or_rwe(class_rw_ext_t *rwe, const class_ro_t *ro) {
        // the release barrier is so that the class_rw_ext_t::ro initialization
        // is visible to lockless readers
        rwe->ro = ro;
        ro_or_rw_ext_t{rwe, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_release);
    }

    class_rw_ext_t *extAlloc(const class_ro_t *ro, bool deep = false);

public:
    void setFlags(uint32_t set)
    {
        __c11_atomic_fetch_or((_Atomic(uint32_t) *)&flags, set, __ATOMIC_RELAXED);
    }

    void clearFlags(uint32_t clear)
    {
        __c11_atomic_fetch_and((_Atomic(uint32_t) *)&flags, ~clear, __ATOMIC_RELAXED);
    }

    // set and clear must not overlap
    void changeFlags(uint32_t set, uint32_t clear)
    {
        ASSERT((set & clear) == 0);

        uint32_t oldf, newf;
        do {
            oldf = flags;
            newf = (oldf | set) & ~clear;
        } while (!CompareAndSwap(oldf, newf, &flags));
    }

    class_rw_ext_t *ext() const {
        return get_ro_or_rwe().dyn_cast<class_rw_ext_t *>(&ro_or_rw_ext);
    }

    class_rw_ext_t *extAllocIfNeeded() {
        auto v = get_ro_or_rwe();
        if (fastpath(v.is<class_rw_ext_t *>())) {
            return v.get<class_rw_ext_t *>(&ro_or_rw_ext);
        } else {
            return extAlloc(v.get<const class_ro_t *>(&ro_or_rw_ext));
        }
    }

    class_rw_ext_t *deepCopy(const class_ro_t *ro) {
        return extAlloc(ro, true);
    }

    const class_ro_t *ro() const {
        auto v = get_ro_or_rwe();
        if (slowpath(v.is<class_rw_ext_t *>())) {
            return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro;
        }
        return v.get<const class_ro_t *>(&ro_or_rw_ext);
    }

    void set_ro(const class_ro_t *ro) {
        auto v = get_ro_or_rwe();
        if (v.is<class_rw_ext_t *>()) {
            v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro = ro;
        } else {
            set_ro_or_rwe(ro);
        }
    }

    const method_array_t methods() const {
        auto v = get_ro_or_rwe();
        if (v.is<class_rw_ext_t *>()) {
            return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->methods;
        } else {
            return method_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseMethods};
        }
    }//方法列表

    const property_array_t properties() const {
        auto v = get_ro_or_rwe();
        if (v.is<class_rw_ext_t *>()) {
            return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->properties;
        } else {
            return property_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProperties};
        }
    }//属性列表

    const protocol_array_t protocols() const {
        auto v = get_ro_or_rwe();
        if (v.is<class_rw_ext_t *>()) {
            return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->protocols;
        } else {
            return protocol_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProtocols};
        }
    }//协议列表
}

而成员变量信息则是存储在class_ro_t内部中的,我们来到class_ro_t内查看。

class_ro_t 结构体是 Objective-C 运行时中用于描述类的只读数据的重要部分,包含了类的方法列表、属性列表、协议列表等信息。通过 ro_or_rw_ext 成员,class_rw_t 可以指向只读数据(class_ro_t)或读写扩展数据(class_rw_ext_t),并通过成员函数来访问和修改这些数据。

struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;//实例对象大小
#ifdef __LP64__
    uint32_t reserved;
#endif
    const uint8_t * ivarLayout;
    const char * name;//类名
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;//成员变量
    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;
    // This field exists only when RO_HAS_SWIFT_INITIALIZER is set.
    _objc_swiftMetadataInitializer __ptrauth_objc_method_list_imp _swiftMetadataInitializer_NEVER_USE[0];
    _objc_swiftMetadataInitializer swiftMetadataInitializer() const {
        if (flags & RO_HAS_SWIFT_INITIALIZER) {
            return _swiftMetadataInitializer_NEVER_USE[0];
        } else {
            return nil;
        }
    }
    method_list_t *baseMethods() const {
        return baseMethodList;
    }
    class_ro_t *duplicate() const {
        if (flags & RO_HAS_SWIFT_INITIALIZER) {
            size_t size = sizeof(*this) + sizeof(_swiftMetadataInitializer_NEVER_USE[0]);
            class_ro_t *ro = (class_ro_t *)memdup(this, size);
            ro->_swiftMetadataInitializer_NEVER_USE[0] = this->_swiftMetadataInitializer_NEVER_USE[0];
            return ro;
        } else {
            size_t size = sizeof(*this);
            class_ro_t *ro = (class_ro_t *)memdup(this, size);
            return ro;
        }
    }
};

总结如图:
在这里插入图片描述

相关推荐

  1. 杂谈-Android和Ios对比

    2024-06-12 03:52:02       10 阅读
  2. rttIO设备框架面向对象学习-oopc实现特点

    2024-06-12 03:52:02       18 阅读
  3. IOC推导和本质

    2024-06-12 03:52:02       37 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-06-12 03:52:02       16 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-06-12 03:52:02       16 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-06-12 03:52:02       15 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-06-12 03:52:02       18 阅读

热门阅读

  1. 学习PLC+LabVIEW

    2024-06-12 03:52:02       7 阅读
  2. 【VUE3】自定义防抖指令

    2024-06-12 03:52:02       8 阅读
  3. controller_manager卡在loading_controller

    2024-06-12 03:52:02       9 阅读
  4. 中继器简介

    2024-06-12 03:52:02       9 阅读
  5. 【MySQL】(基础篇一)—— SQL介绍和前置知识

    2024-06-12 03:52:02       6 阅读
  6. BGP宣告+自动汇总问题

    2024-06-12 03:52:02       6 阅读
  7. 2024.6.11

    2024-06-12 03:52:02       9 阅读
  8. 爬虫案例实战

    2024-06-12 03:52:02       6 阅读
  9. 6、Spring之Bean生命周期~创建Bean(2)

    2024-06-12 03:52:02       7 阅读