033.搜索旋转排序数组

题意

整数数组 nums 按升序排列,数组中的值 互不相同

在传递给方法之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你旋转后的数组 nums 和一个整数 target,如果 nums 中存在这个目标值 target,则返回它的下标,否则返回 -1 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

难度

中等

示例

输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4

输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1

分析 1

这道题咋眼一看,有点绕,给一个旋转后的数组,和一个目标值,并要求我们找到这个目标值的下标。

但稍微分析一下就知道,就是在一个数组当中查找一个目标值,如果不考虑时间复杂度的话,我们可以直接遍历一遍,找到就返回下标,找不到就返回-1。

超级简单:

class Solution {
    public int search(int[] nums, int target) {
        for(int i = 0;i < nums.length;i++){
            if(nums[i] == target)
                return i;
        }
        return -1;
    }
}

来看一下效率:

效率不错,但要时间复杂度为对数级别。那就要考虑别的算法

分析 2

我们知道,在一个有序的数组里面去判断一个数是否存在,可以利用二分查找,时间复杂度刚好就是$O(\log{n})$。

但这道题只是部分有序(因为旋转了),该怎么去判断呢?

闭上眼,想一下。

从任意位置将这个部分有序的数组分开,那么分开之后的两部分必然有一部分是有序的!

比如:

nums = [4,5,6,7,0,1,2]      
nums = [4] [5,6,7,0,1,2]	breakPos = 1
nums = [4,5] [6,7,0,1,2]    breakPos = 2
nums = [4,5,6] [7,0,1,2]    breakPos = 3
nums = [4,5,6,7] [0,1,2]    breakPos = 4
nums = [4,5,6,7,0] [1,2]    breakPos = 5
nums = [4,5,6,7,0,1] [2]    breakPos = 6

果然,至少有一部分是有序的。那我们是不是就可以从有序的部分当中去寻找 target 呢?

可以是可以,但时间复杂度并不是 $O(\log{n})$,还要加上 breakPos 分割后无序的部分,合起来就是$O(n + \log{n})$,显然也不符合题目的要求。

考虑下面的思路:

  • 如果[lef,breakPos - 1]是有序的,而且nums[lef] <= target && target < nums[breakPos],那么答案肯定在[lef, breakPos - 1],直接调整上界rig到breakPos - 1。
  • 如果[breakPos,rig]是有序的,而且nums[breakPos] < target && target <= nums[rig],那么答案肯定在[breakPos,rig]中,调整下界lef到breakPos即可。

也就是说,我们通过判断有序的部分,来决定下一步的查找范围。

  • 只有在有序区间内才可以通过区间两端的数值判断 target 是否在其中。
  • 判断有序区间还是乱序区间:left <= right 是顺序区间,否则乱序区间。
  • 每次二分至少存在一个有序区间。
class Solution {
    public int search(int[] nums, int target) {
        int siz = nums.length; // 数组长度
        int lef = 0, rig = siz - 1; // 初始化左右指针
        while (lef <= rig) { // 当左指针小于等于右指针时进行循环
            int mid = (lef + rig) >> 1; // 计算中间索引,使用右移运算符相当于除以 2
            if (nums[mid] == target) // 如果中间元素等于目标值,返回中间索引
                return mid;
            if (nums[0] <= nums[mid]) { // 如果左半部分有序
                if (nums[0] <= target && target < nums[mid]) // 如果目标值在左半部分范围内
                    rig = mid - 1; // 移动右指针
                else
                    lef = mid + 1; // 否则移动左指针
            } else { // 右半部分有序
                if (nums[mid] < target && target <= nums[siz - 1]) //如果目标值在右半部分范围内
                    lef = mid + 1; // 移动左指针
                else
                    rig = mid - 1; // 否则移动右指针
            }
        }
        return -1; // 如果未找到目标值,返回 -1
    }
}

我们来分析一下代码的关键部分:

第一步,初始化

  • siz:数组长度。
  • lef 和 rig:左右指针,分别初始化为数组的第一个和最后一个索引。

第二步,二分查找

计算中间索引 mid;如果 nums[mid] 等于目标值 target,直接返回 mid。

检查数组的左半部分是否有序(nums[0] <= nums[mid])。

如果左半部分有序,并且目标值在左半部分范围内(nums[0] <= target && target < nums[mid]),移动右指针到 mid - 1;否则,移动左指针到 mid + 1。

如果右半部分有序,并且目标值在右半部分范围内(nums[mid] < target && target <= nums[siz - 1]),移动左指针到 mid + 1;否则,移动右指针到 mid - 1。

第三步,如果循环结束仍未找到目标值,返回 -1。

假设数组为 [4, 5, 6, 7, 0, 1, 2],目标值 target 为 0,我们来模拟一下整个题解过程:

  • 1.初始 lef = 0,rig = 6,mid = 3,nums[mid] = 7。
  • 2.nums[0] <= nums[mid],左半部分有序。
  • 3. 0 不在左半部分范围内,移动左指针 lef = 4。
  • 4.更新 mid = 5,nums[mid] = 1。
  • 5.nums[4] <= nums[mid],右半部分有序。
  • 6. 0 在右半部分范围内,移动右指针 rig = 5。
  • 7.更新 mid = 4,nums[mid] = 0,找到目标值,返回 4。

总结

遇到 O(log n) 的题目,首先想到的就是二分查找,这道题也是一样,只不过在二分查找的基础上,增加了一些判断条件。而二分查找的关键是找到有序的部分。

力扣链接:. - 力扣(LeetCode)

相关推荐

  1. 搜索旋转排序数组

    2024-06-08 10:28:03       22 阅读
  2. 搜索旋转排序数组

    2024-06-08 10:28:03       12 阅读
  3. 33.搜索旋转排序数组

    2024-06-08 10:28:03       41 阅读
  4. LeetCode 33 搜索旋转排序数组

    2024-06-08 10:28:03       40 阅读
  5. LeetCode 33. 搜索旋转排序数组

    2024-06-08 10:28:03       35 阅读
  6. leetcode81 搜索旋转排序数组 II

    2024-06-08 10:28:03       40 阅读
  7. 面试算法-79-搜索旋转排序数组

    2024-06-08 10:28:03       17 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-06-08 10:28:03       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-06-08 10:28:03       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-06-08 10:28:03       18 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-06-08 10:28:03       20 阅读

热门阅读

  1. 每日一题36:数据分组之科目种类数量

    2024-06-08 10:28:03       10 阅读
  2. kubernetes之安装ingress-nginx(k8s1.19版本之后)

    2024-06-08 10:28:03       12 阅读
  3. azure cli的安装和使用

    2024-06-08 10:28:03       8 阅读
  4. go语言打印出变量的类型

    2024-06-08 10:28:03       6 阅读
  5. 【自动驾驶】点与向量从ego系转odometry系

    2024-06-08 10:28:03       10 阅读
  6. Github 2024-06-08 开源项目日报Top10

    2024-06-08 10:28:03       8 阅读
  7. 长轮询之websocket

    2024-06-08 10:28:03       9 阅读
  8. langchian_aws模块学习

    2024-06-08 10:28:03       11 阅读