IOCP实现UDP Server

IOCP实现UDP Server

1、IOCP原理图

参考文献1:IOCP详解-阿里云开发者社区 (aliyun.com)

参考文献2:IOCP编程之基本原理 - 史D芬周 - 博客园 (cnblogs.com)

原理图

image.png

同步以及异步

image.png

image.png

2、UDP Server代码以及测试代码

// iocpudpdemo.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//

// UDP Server
// RIOTest.cpp : Defines the entry point for the console application.
//
#pragma comment(lib, "ws2_32.lib")

#include <WS2tcpip.h>
#include <map>
#include <memory>
#include <cstring>
#include <thread>
#include <iostream>

using namespace std;

SOCKET g_s;
HANDLE g_hIOCP = 0;
long g_workIterations = 0;
LARGE_INTEGER g_frequency;
LARGE_INTEGER g_startCounter;
LARGE_INTEGER g_stopCounter;

volatile long g_packets = 0;

static const DWORD EXPECTED_DATA_SIZE = 8192;
static const DWORD RIO_MAX_RESULTS = 1000;
static const DWORD TIMING_THREAD_AFFINITY_MASK = 1;
static const unsigned short PORT = 8081;

struct EXTENDED_OVERLAPPED : public OVERLAPPED
{
    WSABUF buf;
};

inline void ErrorExit(
    const char* pFunction,
    const DWORD lastError)
{
    cout << "Error: " << pFunction << " failed: " << lastError << endl;
    exit(0);
}

inline void ErrorExit(
    const char* pFunction)
{
    const DWORD lastError = ::GetLastError();

    ErrorExit(pFunction, lastError);
}

inline void SetupTiming(
    const char* pProgramName,
    const bool lockToThreadForTiming = true)
{
    cout << pProgramName << endl;
    cout << "Work load: " << g_workIterations << endl;
    cout << "Max results: " << RIO_MAX_RESULTS << endl;
    if (lockToThreadForTiming)
    {
        HANDLE hThread = ::GetCurrentThread();

        if (0 == ::SetThreadAffinityMask(hThread, TIMING_THREAD_AFFINITY_MASK))
        {
            ErrorExit("SetThreadAffinityMask");
        }
    }
    if (!::QueryPerformanceFrequency(&g_frequency))
    {
        ErrorExit("QueryPerformanceFrequency");
    }
}

inline void PrintTimings(
    const char* pDirection = "Received ")
{
    LARGE_INTEGER elapsed;

    elapsed.QuadPart = (g_stopCounter.QuadPart - g_startCounter.QuadPart) / (g_frequency.QuadPart / 1000);

    cout << "Complete in " << elapsed.QuadPart << "ms" << endl;
    cout << pDirection << g_packets << " datagrams" << endl;

    if (elapsed.QuadPart != 0)
    {
        const double perSec = g_packets / elapsed.QuadPart * 1000.00;

        cout << perSec << " datagrams per second" << endl;
    }
}

inline void InitialiseWinsock()
{
    WSADATA data;
    WORD wVersionRequested = 0x202;
    if (0 != ::WSAStartup(wVersionRequested, &data))
    {
        ErrorExit("WSAStartup");
    }
}

inline SOCKET CreateSocket(
    const DWORD flags = 0)
{
    g_s = ::WSASocket(AF_INET, SOCK_DGRAM, IPPROTO_UDP, NULL, 0, flags);
    if (g_s == INVALID_SOCKET)
    {
        ErrorExit("WSASocket");
    }
    return g_s;
}

inline HANDLE CreateIOCP()
{
    g_hIOCP = ::CreateIoCompletionPort(INVALID_HANDLE_VALUE, 0, 0, 0);
    if (0 == g_hIOCP)
    {
        ErrorExit("CreateIoCompletionPort");
    }
    return g_hIOCP;
}

inline void Bind(
    SOCKET s,
    const unsigned short port)
{
    sockaddr_in addr;
    addr.sin_family = AF_INET;
    addr.sin_port = htons(port);
    addr.sin_addr.s_addr = INADDR_ANY;
    if (SOCKET_ERROR == ::bind(s, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr)))
    {
        ErrorExit("bind");
    }
}

template <typename TV, typename TM>
inline TV RoundDown(TV Value, TM Multiple)
{
    return((Value / Multiple) * Multiple);
}

template <typename TV, typename TM>
inline TV RoundUp(TV Value, TM Multiple)
{
    return(RoundDown(Value, Multiple) + (((Value % Multiple) > 0) ? Multiple : 0));
}

inline void StartTiming()
{
    if (!::QueryPerformanceCounter(&g_startCounter))
    {
        ErrorExit("QueryPerformanceCounter");
    }

    cout << "Timing started" << endl;
}

inline void StopTiming()
{
    if (!::QueryPerformanceCounter(&g_stopCounter))
    {
        ErrorExit("QueryPerformanceCounter");
    }

    cout << "Timing stopped" << endl;
}

inline char* AllocateBufferSpace(
    const DWORD recvBufferSize,
    const DWORD pendingRecvs,
    DWORD& bufferSize,
    DWORD& receiveBuffersAllocated)
{
    const DWORD preferredNumaNode = 0;
    const SIZE_T largePageMinimum = 0;
    SYSTEM_INFO systemInfo;
    ::GetSystemInfo(&systemInfo);
    systemInfo.dwAllocationGranularity;
    const unsigned __int64 granularity = (largePageMinimum == 0 ? systemInfo.dwAllocationGranularity : largePageMinimum);
    const unsigned __int64 desiredSize = recvBufferSize * pendingRecvs;
    unsigned __int64 actualSize = RoundUp(desiredSize, granularity);
    if (actualSize > (std::numeric_limits<DWORD>::max)())
    {
        actualSize = ((std::numeric_limits<DWORD>::max)() / granularity) * granularity;
    }
    receiveBuffersAllocated = std::min<DWORD>(pendingRecvs, static_cast<DWORD>(actualSize / recvBufferSize));
    bufferSize = static_cast<DWORD>(actualSize);
    char* pBuffer = reinterpret_cast<char*>(VirtualAllocExNuma(GetCurrentProcess(), 0, bufferSize, MEM_COMMIT | MEM_RESERVE | (largePageMinimum != 0 ? MEM_LARGE_PAGES : 0), PAGE_READWRITE, preferredNumaNode));
    if (pBuffer == 0)
    {
        ErrorExit("VirtualAlloc");
    }
    return pBuffer;
}

inline char* AllocateBufferSpace(
    const DWORD recvBufferSize,
    const DWORD pendingRecvs,
    DWORD& receiveBuffersAllocated)
{
    DWORD notUsed;
    return AllocateBufferSpace(recvBufferSize, pendingRecvs, notUsed, receiveBuffersAllocated);
}

inline void PostIOCPRecvs(
    const DWORD recvBufferSize,
    const DWORD pendingRecvs)
{
    DWORD totalBuffersAllocated = 0;

    while (totalBuffersAllocated < pendingRecvs)
    {
        DWORD receiveBuffersAllocated = 0;
        char* pBuffer = AllocateBufferSpace(recvBufferSize, pendingRecvs, receiveBuffersAllocated);
        totalBuffersAllocated += receiveBuffersAllocated;
        DWORD offset = 0;
        const DWORD recvFlags = 0;
        EXTENDED_OVERLAPPED* pBufs = new EXTENDED_OVERLAPPED[receiveBuffersAllocated];
        DWORD bytesRecvd = 0;
        DWORD flags = 0;
        for (DWORD i = 0; i < receiveBuffersAllocated; ++i)
        {
            EXTENDED_OVERLAPPED* pOverlapped = pBufs + i;
            ZeroMemory(pOverlapped, sizeof(EXTENDED_OVERLAPPED));
            pOverlapped->buf.buf = pBuffer + offset;
            pOverlapped->buf.len = recvBufferSize;
            offset += recvBufferSize;
            if (SOCKET_ERROR == ::WSARecvFrom(g_s, &(pOverlapped->buf), 1, &bytesRecvd, &flags, NULL, NULL, pOverlapped, 0))
            {
                const DWORD lastError = ::GetLastError();

                if (lastError != ERROR_IO_PENDING)
                {
                    ErrorExit("WSARecv", lastError);
                }
            }
        }

        if (totalBuffersAllocated != pendingRecvs)
        {
            cout << pendingRecvs << " receives pending" << endl;
        }
    }

    cout << totalBuffersAllocated << " total receives pending" << endl;
}


int main(int argc, char* argv[])
{
    std::map<std::size_t, std::pair<std::size_t, std::shared_ptr<char>>> packets;
    SetupTiming("IOCP UDP");
    InitialiseWinsock();
    SOCKET s = CreateSocket(WSA_FLAG_OVERLAPPED);
    HANDLE hIOCP = CreateIOCP();
    Bind(s, PORT);
    if (0 == ::CreateIoCompletionPort(reinterpret_cast<HANDLE>(s), hIOCP, 0, 0))
    {
        ErrorExit("CreateIoCompletionPort");
    }
    struct sockaddr_in sname;
    int snamesize = sizeof(struct sockaddr_in);
    ::getsockname(s, (struct sockaddr*)&sname, &snamesize);
    std::cout << sname.sin_port << std::endl;
    std::cout << ntohs(sname.sin_port) << std::endl;
    PostIOCPRecvs(8192, 2000);
    bool done = false;
    DWORD numberOfBytes = 0;
    ULONG_PTR completionKey = 0;
    OVERLAPPED* pOverlapped = 0;
    if (!::GetQueuedCompletionStatus(hIOCP, &numberOfBytes, &completionKey, &pOverlapped, INFINITE))
    {
        ErrorExit("GetQueuedCompletionStatus");
    }
    StartTiming();

    //std::thread killIOCP([&]() {
    //    std::cout << "iocp kill start" << std::endl;
    //    std::this_thread::sleep_for(std::chrono::seconds(5));
    //    std::cout << "kill iocp" << std::endl;
    //    CloseHandle(hIOCP);
    //    });
    //killIOCP.detach();

    DWORD bytesRecvd = 0;
    DWORD flags = 0;
    std::size_t times = 0;
    do
    {
        if (numberOfBytes == EXPECTED_DATA_SIZE || numberOfBytes == 100)
        {
            g_packets++;
            EXTENDED_OVERLAPPED* pExtOverlapped = static_cast<EXTENDED_OVERLAPPED*>(pOverlapped);
            if (SOCKET_ERROR == ::WSARecvFrom(g_s, &(pExtOverlapped->buf), 1, &bytesRecvd, &flags, NULL, NULL, pExtOverlapped, 0))
            {
                const DWORD lastError = ::GetLastError();
                std::shared_ptr<char> packet(new char[numberOfBytes]);
                memmove(packet.get(), pExtOverlapped->buf.buf, numberOfBytes);
                if (numberOfBytes == 100) {
                    std::cout << pExtOverlapped->buf.buf[2] << std::endl;
                }
                auto ppp = std::make_pair<std::size_t, std::shared_ptr<char>&>(numberOfBytes, packet);
                packets.insert({ g_packets,ppp });
                if (lastError != ERROR_IO_PENDING)
                {
                    ErrorExit("WSARecv", lastError);
                }
            }
        }
        else
        {
            g_packets++;
            EXTENDED_OVERLAPPED* pExtOverlapped = static_cast<EXTENDED_OVERLAPPED*>(pOverlapped);
            if (SOCKET_ERROR == ::WSARecvFrom(g_s, &(pExtOverlapped->buf), 1, &bytesRecvd, &flags, NULL, NULL, pExtOverlapped, 0))
            {
                const DWORD lastError = ::GetLastError();
                std::shared_ptr<char> packet(new char[numberOfBytes]);
                memmove(packet.get(), pExtOverlapped->buf.buf, numberOfBytes);
                auto ppp = std::make_pair<std::size_t, std::shared_ptr<char>&>(numberOfBytes, packet);
                packets.insert({ g_packets,ppp });
                std::cout << "use count:" << packet.use_count() << std::endl;
                if (lastError != ERROR_IO_PENDING)
                {
                    ErrorExit("WSARecv", lastError);
                }
            }
            std::cout << "packets size: " << packets.size() << std::endl;
            StopTiming();
            done = true;
        }
        if (!done)
        {
            if (!::GetQueuedCompletionStatus(hIOCP, &numberOfBytes, &completionKey, &pOverlapped, INFINITE))
            {
                DWORD error = GetLastError();
                if (ERROR_ABANDONED_WAIT_0 == error || ERROR_INVALID_HANDLE == error) {
                    StopTiming();
                    std::cout << error << std::endl;
                    break;
                }
                ErrorExit("GetQueuedCompletionStatus");
            }
        }
    } while (!done);
    PrintTimings();
    packets.clear();
    return 0;
}

测试代码

#include <boost/asio.hpp>
#include <cstring>
#include <iostream>

char* makeMem(size_t size){
    char* mem = (char*)malloc(size);
    memset(mem,'1',size);
    memset(mem+(size-8296),'2',8296);
    return mem;
}

int main(){
    boost::asio::io_context context;
    boost::asio::ip::udp::endpoint destEndpoint = boost::asio::ip::udp::endpoint(boost::asio::ip::make_address("10.10.1.40"),8081);

    boost::asio::ip::udp::socket transmitter = boost::asio::ip::udp::socket(context,boost::asio::ip::udp::endpoint(boost::asio::ip::udp::v4(), 10120));
    size_t size = 20*1024*1024 + 100;// 20MB
    char* mem = makeMem(size);
    char* sendData = mem;

    std::size_t payload = 8192;
    std::size_t leftLastSize = size %payload;
    std::size_t sendTimes = size/payload;
    char headerData[100] = {3};
    memset(headerData,3,sizeof(headerData));
    transmitter.send_to(boost::asio::buffer(headerData, sizeof(headerData)), destEndpoint);
    for(size_t idx =0;idx<sendTimes;++idx,sendData+=payload){
        transmitter.send_to(boost::asio::buffer(sendData, payload), destEndpoint);
        std::cout << idx<<std::endl;
        //std::this_thread::sleep_for(std::chrono::milliseconds(1));
    }
    transmitter.send_to(boost::asio::buffer(sendData, leftLastSize), destEndpoint);
    std::cout << "------------"<<std::endl;
    std::this_thread::sleep_for(std::chrono::seconds(10));

    sendData = mem;
    transmitter.send_to(boost::asio::buffer(headerData, sizeof(headerData)), destEndpoint);
    for(size_t idx =0;idx<sendTimes;++idx,sendData+=payload){
        transmitter.send_to(boost::asio::buffer(sendData, payload), destEndpoint);
        std::cout << idx<<std::endl;
        //std::this_thread::sleep_for(std::chrono::milliseconds(1));
    }
    transmitter.send_to(boost::asio::buffer(sendData, leftLastSize), destEndpoint);


    char tailerData[10] = {9};
    transmitter.send_to(boost::asio::buffer(tailerData, sizeof(tailerData)), destEndpoint);

    delete mem;
    return 0;
}

最后,推荐一个项目,上述代码基本来自于该项目

LenHolgate/RIO: Code that explores the Windows Registered I/O Networking Extensions (github.com)

相关推荐

  1. spring(三):IOC介绍及代码实现

    2024-05-03 02:48:04       33 阅读
  2. iocp简单例子

    2024-05-03 02:48:04       32 阅读

最近更新

  1. TCP协议是安全的吗?

    2024-05-03 02:48:04       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-05-03 02:48:04       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-05-03 02:48:04       19 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-05-03 02:48:04       20 阅读

热门阅读

  1. MySQL-笔记-09.存储过程及触发器的使用

    2024-05-03 02:48:04       12 阅读
  2. fastjson组件的使用

    2024-05-03 02:48:04       11 阅读
  3. python 如何判断是函数还是方法 (function or method)

    2024-05-03 02:48:04       11 阅读
  4. windows版本的epoll

    2024-05-03 02:48:04       13 阅读
  5. 全面解析Unity至Unreal的项目迁移流程

    2024-05-03 02:48:04       13 阅读
  6. 常用的路径抽稀算法

    2024-05-03 02:48:04       10 阅读
  7. npm一篇通

    2024-05-03 02:48:04       13 阅读
  8. UML图(总结)

    2024-05-03 02:48:04       12 阅读
  9. WPF之ToolTip提示

    2024-05-03 02:48:04       16 阅读
  10. sklearn和torch计算的r2 score不一样

    2024-05-03 02:48:04       14 阅读
  11. asp爬虫代码简单示例

    2024-05-03 02:48:04       10 阅读
  12. [AI OpenAI-doc] 文件搜索 Beta

    2024-05-03 02:48:04       16 阅读
  13. Github2024-04-28php开源项目日报Top9

    2024-05-03 02:48:04       12 阅读
  14. Microsoft.NET 框架程序设计 —— 类型基础

    2024-05-03 02:48:04       12 阅读
  15. 长亭安全运营实习一面

    2024-05-03 02:48:04       13 阅读