【Matlab函数分析】对二维或三维散点数据插值函数scatteredInterpolant

🔗 运行环境:Matlab

🚩 撰写作者:左手の明天

🥇 精选专栏:《python》

🔥  推荐专栏:《算法研究》

#### 防伪水印——左手の明天 ####

💗 大家好🤗🤗🤗,我是左手の明天!好久不见💗

💗今天更新系列——对二维或三维散点数据插值函数scatteredInterpolant💗

📆  最近更新:2024 年 04 月 25 日,左手の明天的第 326 篇原创博客

📚 更新于专栏:matlab

#### 防伪水印——左手の明天 ####


使用 scatteredInterpolant 对散点数据的二维或三维数据集执行插值。scatteredInterpolant 返回给定数据集的差值 F。可以计算一组查询点(例如二维 (xq,yq))处的 F 值,以得出插入的值 vq = F(xq,yq)

目录

函数描述

输入参数

x, y, z — 样本点

P — 样本点数组

v — 样本点处的函数值

Method — 插值方法

ExtrapolationMethod — 外插方法

示例

二维插值

三维插值

替代样本值

比较散点数据的插值方法

在查询点进行多组值插值


函数描述

F = scatteredInterpolant 创建一个空的散点数据插值对象。

F = scatteredInterpolant(x,y,v) 创建一个拟合 v = F(x,y) 形式的曲面的插值。向量 x 和 y 指定样本点的 (x,y) 坐标。v 包含与点 (x,y) 关联的样本值。

F = scatteredInterpolant(x,y,z,v) 创建一个 v = F(x,y,z) 形式的三维插值。

F = scatteredInterpolant(P,v) 以数组形式指定样本点坐标。P 的行包含 v 中值的 (x, y) 或 (x, y, z) 坐标。

F = scatteredInterpolant(___,Method) 指定插值方法:'nearest''linear' 或 'natural'。在前三个语法中的任意一个中指定 Method 作为最后一个输入参量。

F = scatteredInterpolant(___,​​​​​​​Method,​​​​​​​ExtrapolationMethod) 指定内插和外插方法。在前三个语法的任意一个中同时传递 Method 和 ExtrapolationMethod 作为最后两个输入参量。

  • Method 可以是 'nearest''linear' 或 'natural'

  • ExtrapolationMethod 可以是 'nearest''linear' 或 'none'


输入参数

xyz — 样本点

样本点,指定为列向量,其行数与 v 相同。样本点应该是唯一的。但是,如果样本点包含重复项,scatteredInterpolant 将显示警告并将重复项合并为单个点。

P — 样本点数组

样本点数组,指定为 m×n 的矩阵,其中 m 是点数,n 是这些点所在空间的维度。P 的各行包含样本点的 (x, y) 或 (x, y, z) 坐标。样本点应该是唯一的。

v — 样本点处的函数值

样本点处的函数值,指定为向量或矩阵。对于二维数据,v = F(x,y)。对于三维数据,v = F(x,y,z)。

  • 要使用一组值进行插值,请将 v 指定为向量,其中行数与样本点数相同。

  • 要使用多组值进行插值,请将 v 指定为矩阵,其中行数与样本点数相同。v 中的每列表示不同函数在样本点的值。例如,如果 x 和 y 是包含 10 个元素的列向量,则可以将 v 指定为 10×4 矩阵以使用四组不同值进行插值。

Method — 插值方法

插值方法,指定为下列选项之一。

方法 描述 连续性
'linear'(默认值)

线性插值

C0
'nearest'

最近邻点插值

不连续
'natural'

自然邻点插值

C1(样本点处除外)

ExtrapolationMethod — 外插方法

外插法,指定为下列选项之一。

ExtrapolationMethod 描述
'linear'

基于边界梯度的线性外插。Method 为 'linear' 或 'natural' 时的默认值。

'nearest'

最近邻点外插。此方法的计算结果为最近邻点的值。Method 为 'nearest' 时的默认值。

'none'

无外插。Points 凸包之外的任何查询返回 NaN


示例

二维插值

定义一些样本点,并计算这些位置的三角函数的值。这些点是用于插值的样本值。

t = linspace(3/4*pi,2*pi,50)';
x = [3*cos(t); 2*cos(t); 0.7*cos(t)];
y = [3*sin(t); 2*sin(t); 0.7*sin(t)];
v = repelem([-0.5; 1.5; 2],length(t));

创建插值。

F = scatteredInterpolant(x,y,v);

计算位于查询位置 (xqyq) 处的插值。

tq = linspace(3/4*pi+0.2,2*pi-0.2,40)';
xq = [2.8*cos(tq); 1.7*cos(tq); cos(tq)];
yq = [2.8*sin(tq); 1.7*sin(tq); sin(tq)];
vq = F(xq,yq);

绘制结果。

plot3(x,y,v,'.',xq,yq,vq,'.'), grid on
title('Linear Interpolation')
xlabel('x'), ylabel('y'), zlabel('Values')
legend('Sample data','Interpolated query data','Location','Best')

三维插值

为一组散点样本点创建插值,然后计算一组三维查询点处的插值。

定义 200 个随机点并对三角函数采样。这些点是用于插值的样本值。

rng default;
P = -2.5 + 5*rand([200 3]);
v = sin(P(:,1).^2 + P(:,2).^2 + P(:,3).^2)./(P(:,1).^2+P(:,2).^2+P(:,3).^2);

创建插值。

F = scatteredInterpolant(P,v);

计算位于查询位置 (xq,yq,zq) 处的插值。

[xq,yq,zq] = meshgrid(-2:0.25:2);
vq = F(xq,yq,zq);

绘制结果的切片。

xslice = [-.5,1,2]; 
yslice = [0,2]; 
zslice = [-2,0];
slice(xq,yq,zq,vq,xslice,yslice,zslice)

 

替代样本值

在需要更改位于样本点处的值时替换 Values 属性中的元素。由于原始三角剖分没有改变,因此在计算新插值时可立即获得结果。

创建 50 个随机点并对指数函数进行采样。这些点是用于插值的样本值。

rng('default')
x = -2.5 + 5*rand([50 1]);
y = -2.5 + 5*rand([50 1]);
v = x.*exp(-x.^2-y.^2);

创建插值。

F = scatteredInterpolant(x,y,v)
F = 
  scatteredInterpolant with properties:

                 Points: [50x2 double]
                 Values: [50x1 double]
                 Method: 'linear'
    ExtrapolationMethod: 'linear'

在 (1.40,1.90) 处计算插值。

F(1.40,1.90)
ans = 0.0069

更改插值样本值,并重新计算同一点处的插值。

vnew = x.^2 + y.^2;
F.Values = vnew;
F(1.40,1.90)
ans = 5.6491

比较散点数据的插值方法

比较 scatteredInterpolant 提供的几种不同插值算法的结果。

创建包含 50 个散点的样本数据集。这里有意使用较少的点数量,目的是为了突出插值方法之间的差异。

x = -3 + 6*rand(50,1);
y = -3 + 6*rand(50,1);
v = sin(x).^4 .* cos(y);

创建插值和查询点网格。

F = scatteredInterpolant(x,y,v);
[xq,yq] = meshgrid(-3:0.1:3);

使用 'nearest''linear' 和 'natural' 方法绘制结果图。每当插值方法更改时,都需要重新查询插值以获取更新后的结果。

F.Method = 'nearest';
vq1 = F(xq,yq);
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq1)
title('Nearest Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

F.Method = 'linear';
vq2 = F(xq,yq);
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq2)
title('Linear')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

F.Method = 'natural';
vq3 = F(xq,yq);
figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq3)
title('Natural Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

绘制精确解。

figure
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,sin(xq).^4 .* cos(yq))
title('Exact Solution')
legend('Sample Points','Exact Surface','Location','NorthWest')

在查询点进行多组值插值

在相同的查询点对多个数据集进行插值。

创建一个包含 50 个散点的样本数据集,由样本点向量 x 和 y 表示。

rng("default")
x = -3 + 6*rand(50,1);
y = -3 + 6*rand(50,1);

要对多个数据集进行插值,请创建一个矩阵,其中每列表示不同函数在样本点的值。

s1 = sin(x).^4 .* cos(y);
s2 = sin(x) + cos(y);
s3 = x + y;
s4 = x.^2 + y;
v = [s1 s2 s3 s4];

创建查询点向量,指示为 v 中的每组值执行插值的位置。

xq = -3:0.1:3;
yq = -3:0.1:3;

创建插值 F

F = scatteredInterpolant(x,y,v)
F = 
  scatteredInterpolant with properties:

                 Points: [50x2 double]
                 Values: [50x4 double]
                 Method: 'linear'
    ExtrapolationMethod: 'linear'

计算位于查询位置的插值。Vq 的每页都包含 v 中对应数据集的插值。

Vq = F({xq,yq});
size(Vq)
ans = 1×3

    61    61     4

绘制每个数据集的插值。

tiledlayout(2,2)
nexttile
plot3(x,y,v(:,1),'mo')
hold on
mesh(xq,yq,Vq(:,:,1)')
title("sin(x).^4 .* cos(y)")

nexttile
plot3(x,y,v(:,2),'mo')
hold on
mesh(xq,yq,Vq(:,:,2)')
title("sin(x) + cos(y)")

nexttile
plot3(x,y,v(:,3),'mo')
hold on
mesh(xq,yq,Vq(:,:,3)')
title("x + y")

nexttile
plot3(x,y,v(:,4),'mo')
hold on
mesh(xq,yq,Vq(:,:,4)')
title("x.^2 + y")

lg = legend("Sample Points","Interpolated Surface");
lg.Layout.Tile = "north";

最近更新

  1. TCP协议是安全的吗?

    2024-04-29 20:02:02       16 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-04-29 20:02:02       16 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-04-29 20:02:02       15 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-04-29 20:02:02       18 阅读

热门阅读

  1. 边缘计算概述_5.边缘计算应用场景

    2024-04-29 20:02:02       10 阅读
  2. mac 安装 python3

    2024-04-29 20:02:02       8 阅读
  3. 计算机网络 2.4差错检验与校正

    2024-04-29 20:02:02       10 阅读
  4. springboot常用注释

    2024-04-29 20:02:02       11 阅读
  5. echarts 旭日图 层级嵌套 子级完全继承父级颜色

    2024-04-29 20:02:02       13 阅读
  6. TP8 利用jwt 生成token

    2024-04-29 20:02:02       9 阅读
  7. Nginx自定义状态码499出现原因

    2024-04-29 20:02:02       11 阅读
  8. 建造者模式(装修公司装修套餐)

    2024-04-29 20:02:02       12 阅读
  9. curl_opt参数解析

    2024-04-29 20:02:02       11 阅读
  10. TensorFlow框架介绍-深度学习

    2024-04-29 20:02:02       12 阅读