【c语言】自定义类型:结构体详解

目录

自定义类型:结构体

结构体类型的声明

结构体变量的创建和初始化

结构的特殊声明

结构的自引用

结构体内存对齐

对其规则

为什么存在内存对齐?

修改默认对⻬数

结构体传参

结构体实现位段

位段的内存分配

位段的跨平台问题

位段的应用

位段使⽤的注意事项


自定义类型:结构体

结构体类型的声明

  • 结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
  • 结构的声明
struct tag
{
	int member;

}variable;
  • 例如描述⼀个学⽣:
struct Stu
{
	char name[20];	//名字
	int age;		//年龄
	char sex[5];	//性别
	char id[20];	//学号
};					//分号不能丢

结构体变量的创建和初始化

#include <stdio.h>

struct Stu
{
	char name[20];//名字
	int age;//年龄
	char sex[5];//性别
	char id[20];//学号
};

int main()
{
	//按照结构体成员的顺序初始化
	struct Stu s = { "张三", 20, "男", "20230818001" };

	printf("name: %s\n", s.name);
	printf("age : %d\n", s.age);
	printf("sex : %s\n", s.sex);
	printf("id : %s\n", s.id);

	//按照指定的顺序初始化
	struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥" };

	printf("name: %s\n", s2.name);
	printf("age : %d\n", s2.age);
	printf("sex : %s\n", s2.sex);
	printf("id : %s\n", s2.id);

	return 0;
}

结构的特殊声明

  • 在声明结构的时候,可以不完全的声明。
  • ⽐如:
//匿名结构体类型
struct
{
	int a;
	char b;
	float c;
}x;

struct
{
	int a;
	char b;
	float c;
}a[20], * p;
  • 上⾯的两个结构在声明的时候省略掉了结构体标签(tag)。
  • 那么问题来了?
//在上⾯代码的基础上,下⾯的代码合法吗?
p = &x;
  • 警告:
  • 编译器会把上⾯的两个声明当成完全不同的两个类型,所以是⾮法的。
  • 匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次。

结构的自引用

 在结构中包含⼀个类型为该结构本⾝的成员是否可以呢?

⽐如,定义⼀个链表的节点
struct Node
{
   int data;
   struct Node next;
};
  • 上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?
  • 仔细分析,其实是不⾏的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的⼤⼩就会⽆穷的⼤,是不合理的。
  • 正确的⾃引⽤⽅式:
    struct Node
    {
     int data;
     struct Node* next;
    };
    在结构体⾃引⽤使⽤的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,看看下⾯的代码,可⾏吗?
    typedef struct
    {
      int data;
      Node* next;
    }Node;
    答案是不⾏的,因为Node是对前⾯的匿名结构体类型的重命名产⽣的,但是在匿名结构体内部提前使⽤Node类型来创建成员变量,这是不⾏的。
    • 解决⽅案如下:定义结构体不要使⽤匿名结构体了
    typedef struct Node
    {
     int data;
     struct Node* next;
    }Node;

结构体内存对齐

对其规则

  • ⾸先得掌握结构体的对⻬规则:

//练习1
struct S1
{
	char c1;
	int i;
	char c2;
};

int main()
{
	printf("%d\n", sizeof(struct S1));

	return 0;
}

//练习2
struct S2
{
	char c1;
	char c2;
	int i;
};

int main()
{
	printf("%d\n", sizeof(struct S2));

	return 0;
}

//练习3
struct S3
{
	double d;
	char c;
	int i;
};

int main()
{
	printf("%d\n", sizeof(struct S3));

	return 0;
}

struct S3
{
	double d;
	char c;
	int i;
};

//练习4-结构体嵌套问题
struct S4
{
	char c1;
	struct S3 s3;
	double d;
};

int main()
{
	printf("%d\n", sizeof(struct S4));

	return 0;
}

为什么存在内存对齐?

1. 平台原因 (移植原因):
        不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
        数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
        那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到 让占⽤空间⼩的成员尽量集中在⼀起
//例如:
struct S1
{
	char c1;
	int i;
	char c2;
};

struct S2
{
	char c1;
	char c2;
	int i;
};
S1 S2 类型的成员⼀模⼀样,但是 S1 S2 所占空间的⼤⼩有了⼀些区别。

修改默认对⻬数

#pragma 这个预处理指令,可以改变编译器的默认对⻬数。
#include <stdio.h>

#pragma pack(1)//设置默认对⻬数为1

struct S
{
	char c1;
	int i;
	char c2;
};

#pragma pack()//取消设置的对⻬数,还原为默认

int main()
{
	//输出的结果是什么?
	printf("%d\n", sizeof(struct S));

	return 0;
}

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。

结构体传参

struct S
{
	int data[1000];
	int num;
};

struct S s = { {1,2,3,4}, 1000 };

//结构体传参
void print1(struct S s)
{
	printf("%d\n", s.num);
}

//结构体地址传参
void print2(struct S* ps)
{
	printf("%d\n", ps->num);
}

int main()
{
	print1(s); //传结构体
	print2(&s); //传地址

	return 0;
}

  • 上⾯的 print1 print2 函数哪个好些?
  • 答案是:⾸选print2函数。

结构体实现位段

  • 结构体讲完就得讲讲结构体实现位段的能⼒
  • 什么是位段?
  • 位段的声明和结构是类似的,有两个不同:
  • 1. 位段的成员必须是 int unsigned int signed int ,在C99中位段成员的类型也可以
    选择其他类型。
  • 2. 位段的成员名后边有⼀个冒号和⼀个数字。
    ⽐如:
    struct A
    {
    	int _a : 2;
    	int _b : 5;
    	int _c : 10;
    	int _d : 30;
    };
    A就是⼀个位段类型。
    那位段A所占内存的⼤⼩是多少?
    struct A
    {
    	int _a : 2;
    	int _b : 5;
    	int _c : 10;
    	int _d : 30;
    };
    
    int main()
    {
    	printf("%d\n", sizeof(struct A));
    
    	return 0;
    }

位段的内存分配

//⼀个例⼦
struct S
{
     char a:3;
     char b:4;
     char c:5;
     char d:4;
};

struct S s = {0};

s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

//空间是如何开辟的?

位段的跨平台问题

1. int 位段被当成有符号数还是符号数是不确定的。
2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利⽤,这是不确定的。
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

位段的应用

        下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络的畅通是有帮助的。

位段使⽤的注意事项

        位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
        
        所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。
struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};

int main()
{
	struct A sa = { 0 };
	scanf("%d", &sa._b);//这是错误的

	//正确的⽰范
	int b = 0;
	scanf("%d", &b);
	sa._b = b;

	return 0;
}

相关推荐

  1. C语言-----定义类型-----结构

    2024-04-11 14:28:02       62 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-04-11 14:28:02       98 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-04-11 14:28:02       106 阅读
  3. 在Django里面运行非项目文件

    2024-04-11 14:28:02       87 阅读
  4. Python语言-面向对象

    2024-04-11 14:28:02       96 阅读

热门阅读

  1. node 的路径分析和文件查找策略

    2024-04-11 14:28:02       37 阅读
  2. 问题整理【2024-04-10】

    2024-04-11 14:28:02       35 阅读
  3. 【C++01】吾与C加初相识

    2024-04-11 14:28:02       29 阅读
  4. 从零开始的LeetCode刷题日记:28. 实现 strStr()

    2024-04-11 14:28:02       42 阅读
  5. 医美行业专用服务器:为您的业务保驾护航

    2024-04-11 14:28:02       36 阅读
  6. 二进制转十进制快速方法

    2024-04-11 14:28:02       31 阅读
  7. 美国发布玩具安全标准ASTM F963-23

    2024-04-11 14:28:02       36 阅读
  8. Vue 的父组件和子组件生命周期钩子函数执行顺序

    2024-04-11 14:28:02       33 阅读
  9. 前端面试题大合集

    2024-04-11 14:28:02       33 阅读