unity shader学习练笔日记(二)

1、逐顶点的漫反射光照(兰伯特光照模型)

Shader "Unity Shaders Study/Day Two/DiffuseVertexLevel"
{
    Properties
    {
        _Diffuse("Diffuse", Color) = (1, 1, 1, 1)
    }

    SubShader
    {
        Pass
        {
            //LightMode Pass标签中的一种,用于定义改Pass在Unity的光照流水线中的角色
            Tags{"LightMode" = "ForwardBase"}

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag

            #include "Lighting.cginc"

            fixed4 _Diffuse;

            struct a2v
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                float3 color : COLOR0;
            };

            v2f vert(a2v v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                //获取环境光
                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                //将法线从模型空间转换到世界空间  法线转换保证垂直,使用顶点变换矩阵的逆转置矩阵
                fixed3 worldNormal = normalize(mul(v.normal, (float3x3)unity_WorldToObject));
                //获取光源方向
                fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
                //计算漫反射光
                fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLight));

                o.color = ambient + diffuse;

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                return fixed4(i.color, 1.0);
            }

            ENDCG
        }
    }

    FallBack "Diffuse"
}

在这里插入图片描述
2、逐像素的漫反射光照(兰伯特光照模型)

Shader "Unity Shaders Study/Day Two/DiffusePixelLevel"
{
    Properties
    {
        _Diffuse("Diffuse", Color) = (1, 1, 1, 1)
    }

    SubShader
    {
        Pass
        {
            //LightMode Pass标签中的一种,用于定义改Pass在Unity的光照流水线中的角色
            Tags{"LightMode" = "ForwardBase"}

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag

            #include "Lighting.cginc"

            fixed4 _Diffuse;

            struct a2v
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                float3 worldNormal : TEXCOORD0;
            };

            v2f vert(a2v v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                //将法线从模型空间转换到世界空间  法线转换保证垂直,使用顶点变换矩阵的逆转置矩阵
                o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                //获取环境光
                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                //获取世界空间中的法线
                fixed3 worldNormal = normalize(i.worldNormal);
                //获取光源方向
                fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
                //计算漫反射光
                fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLight));

                fixed3 color = ambient + diffuse;

                return fixed4(color, 1.0);
            }

            ENDCG
        }
    }

    FallBack "Diffuse"
}

在这里插入图片描述
3、逐像素的漫反射光照(半兰伯特光照模型)

Shader "Unity Shaders Study/Day Two/HalfLambert"
{
    Properties
    {
        _Diffuse("Diffuse", Color) = (1, 1, 1, 1)
    }

    SubShader
    {
        Pass
        {
            //LightMode Pass标签中的一种,用于定义改Pass在Unity的光照流水线中的角色
            Tags{"LightMode" = "ForwardBase"}

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag

            #include "Lighting.cginc"

            fixed4 _Diffuse;

            struct a2v
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                float3 worldNormal : TEXCOORD0;
            };

            v2f vert(a2v v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                //将法线从模型空间转换到世界空间  法线转换保证垂直,使用顶点变换矩阵的逆转置矩阵
                o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                //获取环境光
                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                //获取世界空间中的法线
                fixed3 worldNormal = normalize(i.worldNormal);
                //获取光源方向
                fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
                //计算漫反射光
                fixed HalfLambert = dot(worldNormal, worldLight) * 0.5 + 0.5;
                fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * HalfLambert;

                fixed3 color = ambient + diffuse;

                return fixed4(color, 1.0);
            }

            ENDCG
        }
    }

    FallBack "Diffuse"
}

在这里插入图片描述
4、逐顶点的高光反射光照(Phong光照模型)

Shader "Unity Shaders Study/Day Two/SpecularVertexLevel"
{
    Properties
    {
        _Diffuse("Diffuse", Color) = (1, 1, 1, 1)
        //高光反射颜色
        _Specular("Specular", Color) = (1, 1, 1, 1)
        //高光区域的大小
        _Gloss("Gloss", Range(8.0, 256)) = 20
    }

    SubShader
    {
        Pass
        {
            Tags{"LightMode" = "ForwardBase"}

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag

            #include "Lighting.cginc"

            fixed4 _Diffuse;
            fixed4 _Specular;
            float _Gloss;

            struct a2v
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                float3 color : COLOR0;
            };

            v2f vert(a2v v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                fixed3 worldNormal = normalize(mul(v.normal,(float3x3)unity_WorldToObject));
                fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);

                fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLightDir));

                //获取世界空间的反射光线
                fixed3 reflectDir = normalize(reflect(-worldLightDir, worldNormal));
                //获取世界空间的视角方向
                fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - mul(unity_ObjectToWorld, v.vertex).xyz);

                //计算高光
                fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, viewDir)), _Gloss);

                o.color = ambient + diffuse + specular;

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                return fixed4(i.color, 1.0);
            }

            ENDCG
        }
    }

    FallBack "Specular"
}

在这里插入图片描述

5、逐像素的高光反射光照(Phong光照模型)

Shader "Unity Shaders Study/Day Two/SpecularPixelLevel"
{
    Properties
    {
        _Diffuse("Diffuse", Color) = (1, 1, 1, 1)
        //高光反射颜色
        _Specular("Specular", Color) = (1, 1, 1, 1)
        //高光区域的大小
        _Gloss("Gloss", Range(8.0, 256)) = 20
    }

    SubShader
    {
        Pass
        {
            Tags{"LightMode" = "ForwardBase"}

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag

            #include "Lighting.cginc"

            fixed4 _Diffuse;
            fixed4 _Specular;
            float _Gloss;

            struct a2v
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                float3 worldNormal : TEXCOORD0;
                float3 worldPos : TEXCOORD1;
            };

            v2f vert(a2v v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                o.worldNormal = mul(v.normal,(float3x3)unity_WorldToObject);
                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                fixed3 worldNormal = normalize(i.worldNormal);
                fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);

                fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLightDir));

                //获取世界空间的反射光线
                fixed3 reflectDir = normalize(reflect(-worldLightDir, worldNormal));
                //获取世界空间的视角方向
                fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);

                //计算高光
                fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, viewDir)), _Gloss);

                return fixed4(ambient + diffuse + specular, 1.0);
            }

            ENDCG
        }
    }

    FallBack "Specular"
}

在这里插入图片描述

6、逐像素的高光反射光照(Blinn-Phong光照模型)

Shader "Unity Shaders Study/Day Two/BlinnPhong"
{
    Properties
    {
        _Diffuse("Diffuse", Color) = (1, 1, 1, 1)
        //高光反射颜色
        _Specular("Specular", Color) = (1, 1, 1, 1)
        //高光区域的大小
        _Gloss("Gloss", Range(8.0, 256)) = 20
    }

    SubShader
    {
        Pass
        {
            Tags{"LightMode" = "ForwardBase"}

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag

            #include "Lighting.cginc"

            fixed4 _Diffuse;
            fixed4 _Specular;
            float _Gloss;

            struct a2v
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                float3 worldNormal : TEXCOORD0;
                float3 worldPos : TEXCOORD1;
            };

            v2f vert(a2v v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                o.worldNormal = mul(v.normal,(float3x3)unity_WorldToObject);
                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                fixed3 worldNormal = normalize(i.worldNormal);
                fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);

                fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLightDir));

                //获取世界空间的反射光线
                fixed3 reflectDir = normalize(reflect(-worldLightDir, worldNormal));
                //获取世界空间的视角方向
                fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
                fixed3 halfDir = normalize(worldLightDir + viewDir);

                //计算高光
                fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, halfDir)), _Gloss);

                return fixed4(ambient + diffuse + specular, 1.0);
            }

            ENDCG
        }
    }

    FallBack "Specular"
}

在这里插入图片描述
7、逐像素的高光反射光照(Blinn-Phong光照模型)(使用unity内置函数)

Shader "Unity Shaders Study/Day Two/BlinnPhongUseBulidInFunction"
{
    Properties
    {
        _Diffuse("Diffuse", Color) = (1, 1, 1, 1)
        //高光反射颜色
        _Specular("Specular", Color) = (1, 1, 1, 1)
        //高光区域的大小
        _Gloss("Gloss", Range(8.0, 256)) = 20
    }

    SubShader
    {
        Pass
        {
            Tags{"LightMode" = "ForwardBase"}

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag

            #include "Lighting.cginc"

            fixed4 _Diffuse;
            fixed4 _Specular;
            float _Gloss;

            struct a2v
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                float3 worldNormal : TEXCOORD0;
                float3 worldPos : TEXCOORD1;
            };

            v2f vert(a2v v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                //使用内置函数转换法线
                o.worldNormal = UnityObjectToWorldNormal(v.normal);
                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                fixed3 worldNormal = normalize(i.worldNormal);
                //使用内置函数转换光源方向
                fixed3 worldLightDir = normalize(UnityWorldSpaceLightDir(i.worldPos));

                fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLightDir));

                //获取世界空间的反射光线
                fixed3 reflectDir = normalize(reflect(-worldLightDir, worldNormal));
                //使用内置函数获取世界空间的视角方向
                fixed3 viewDir = normalize(UnityWorldSpaceViewDir(i.worldPos));
                fixed3 halfDir = normalize(worldLightDir + viewDir);

                //计算高光
                fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, halfDir)), _Gloss);

                return fixed4(ambient + diffuse + specular, 1.0);
            }

            ENDCG
        }
    }

    FallBack "Specular"
}

在这里插入图片描述

相关推荐

  1. UnityShader)Shader基础

    2024-04-04 12:18:02       46 阅读
  2. 力扣代码学习日记

    2024-04-04 12:18:02       61 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-04-04 12:18:02       94 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-04-04 12:18:02       101 阅读
  3. 在Django里面运行非项目文件

    2024-04-04 12:18:02       82 阅读
  4. Python语言-面向对象

    2024-04-04 12:18:02       91 阅读

热门阅读

  1. Python程序设计 单例模式

    2024-04-04 12:18:02       34 阅读
  2. 【Qt】使用Qt实现Web服务器(十):前端基础

    2024-04-04 12:18:02       32 阅读
  3. Qt5.14.2 揭秘Qt日志神器高效诊断程序潜在隐疾

    2024-04-04 12:18:02       26 阅读
  4. C++4.2

    2024-04-04 12:18:02       31 阅读
  5. os模块篇(十二)

    2024-04-04 12:18:02       32 阅读
  6. 5.108 BCC工具之virtiostat.py解读

    2024-04-04 12:18:02       36 阅读