模型优化系列1:分类器CenterLoss使用Pytorch实现MNIST、CIFAR10、CIFAR100分类图示

CentLoss实现

前言

参考文章:史上最全MNIST系列(三)——Centerloss在MNIST上的Pytorch实现(可视化)
源码:Gitee或Github都有上传,保留了最优版,对最优版调整了一些参数看效果
Gitee传送门:点击这里跳转Gitee源码库
Github传送门:点击这里跳转Github源码库
--------------------无---------------情---------------分---------------割---------------线--------------------
贴心省流:最优效果见文末的v5版

v1

一开始实现的效果还行,但!是!
我忘记参数了(0.0!!)
于是,开始了漫长的尝试。。。

效果

image.png

v2

网络结构

self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 12)
)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.9)

效果

image.png

结论

分类效果不明显

v2_2

v2基础上仅修改了网络结构

网络结构

self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.9)

效果

image.png

结论

输出12–>2+10,分类效果明确,但未完全分开

v2_3

v2_2基础上仅修改了学习率

网络结构

self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

image.png

结论

动量0.9–>0.8,分类效果不明显

v2_4

v2_2基础上仅修改了学习率

网络输出:2+10

self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 3, 1, 1),
    ConvLayer(32, 32, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(32, 64, 3, 1, 1),
    ConvLayer(64, 64, 3, 1, 1),
    nn.MaxPool2d(2),
    ConvLayer(64, 128, 3, 1, 1),
    ConvLayer(128, 128, 3, 1, 1),
    nn.MaxPool2d(2)
)

self.fc = nn.Sequential(
    nn.Linear(128 * 3 * 3, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=512)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.9)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5, momentum=0.9)

效果

image.png

结论

center_loss学习率0.01–>0.5,分类效果不明显

v3

网络结构

self.hidden_layer = nn.Sequential(
    ConvLayer(1, 32, 5, 1, 1),
    ConvLayer(32, 32, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(32, 64, 5, 1, 1),
    ConvLayer(64, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(64, 128, 5, 1, 1),
    ConvLayer(128, 128, 5, 1, 2),
    nn.MaxPool2d(2, 2)
)

self.fc = nn.Sequential(
    nn.Linear(128, 12)
)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.002, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 20, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.7)

效果

image.png

v3_2

v3基础上修改学习率

网络结构

class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 12)
        )

    # self.output_layer = nn.Sequential(
    #     nn.Linear(2, 10)
    # )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        # feature = self.fc(h_out)
        # outs = self.output_layer(feature)
        outs = self.fc(h_out)
        return outs

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

image.png

v4

网络结构

class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.1, momentum=0.8)

效果

image.png

v4_2

v4基础上修改了学习率

网络结构

class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

image.png

结论

centerloss优化器学习率0.1–>0.01,分类效果明显

更换批次

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=256)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.01, momentum=0.8)

效果

image.png

结论

批次1024–>256,计算速度加快,分类速度减慢

v4_3

v4基础上修改了学习率

网络结构

class MainNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden_layer = nn.Sequential(
            ConvLayer(1, 32, 5, 1, 1),
            ConvLayer(32, 32, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(32, 64, 5, 1, 1),
            ConvLayer(64, 64, 5, 1, 2),
            nn.MaxPool2d(2, 2),
            ConvLayer(64, 128, 5, 1, 1),
            ConvLayer(128, 128, 5, 1, 2),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            nn.Linear(128, 2)
        )

        self.output_layer = nn.Sequential(
            nn.Linear(2, 10)
        )

    def forward(self, _x):
        h_out = self.hidden_layer(_x)
        h_out = h_out.reshape(-1, 128)
        feature = self.fc(h_out)
        outs = self.output_layer(feature)
        return torch.cat((feature, outs), dim=1)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=1024)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.8)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 30, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5, momentum=0.8)

效果

image.png

结论

centerloss优化器学习率0.1–>0.5,分类效果明显

v5

加深网络,修改centerloss计算(取消平方根),修改学习率

centerloss计算

# return lamda / 2 * torch.mean(torch.div(torch.sqrt(torch.sum(torch.pow(_x - center_exp, 2), dim=1)), count_exp))
return lamda / 2 * torch.mean(torch.div(torch.sum(torch.pow((_x - center_exp), 2), dim=1), count_exp))

网络结构

self.hidden_layer = nn.Sequential(
    # ConvLayer(1, 32, 5, 1, 2),
    ConvLayer(3, 32, 5, 1, 2),
    ConvLayer(32, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(64, 128, 5, 1, 2),
    ConvLayer(128, 256, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(256, 512, 5, 1, 2),
    ConvLayer(512, 512, 5, 1, 2),
    nn.MaxPool2d(2, 2),
    ConvLayer(512, 256, 5, 1, 2),
    ConvLayer(256, 128, 5, 1, 2),
    ConvLayer(128, 64, 5, 1, 2),
    nn.MaxPool2d(2, 2)
)

self.fc = nn.Sequential(
    # nn.Linear(64, 2)
    nn.Linear(64 * 2 * 2, 2)
)

self.output_layer = nn.Sequential(
    nn.Linear(2, 10)
)

批次和学习率

data_loader = data.DataLoader(dataset=train_data, shuffle=True, batch_size=256)
# ...
net_opt = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(net_opt, 20, gamma=0.8)
c_l_opt = torch.optim.SGD(center_loss_fn.parameters(), lr=0.5)

效果

MNIST
image.png
output.gif
image.png
CIFAR10
image.png
output_cifar10.gif
image.png
CIFAR100
image.png

相关推荐

最近更新

  1. TCP协议是安全的吗?

    2024-04-02 06:50:04       16 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-04-02 06:50:04       16 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-04-02 06:50:04       15 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-04-02 06:50:04       18 阅读

热门阅读

  1. vue3从精通到入门8:reactive的使用

    2024-04-02 06:50:04       16 阅读
  2. Day5-

    Day5-

    2024-04-02 06:50:04      11 阅读
  3. cesium键盘控制相机位置和姿态

    2024-04-02 06:50:04       10 阅读
  4. Jenkins插件下载错误时间问题

    2024-04-02 06:50:04       11 阅读
  5. WPF —— TreeView树形控件

    2024-04-02 06:50:04       11 阅读
  6. 【NoSQL数据库】【redis】redis基础知识整理

    2024-04-02 06:50:04       13 阅读
  7. wpf Menu

    2024-04-02 06:50:04       26 阅读
  8. 1049. 最后一块石头的重量 II(力扣LeetCode)

    2024-04-02 06:50:04       18 阅读
  9. 2022-04-10作业

    2024-04-02 06:50:04       15 阅读