Pytorch入门实战 P4-猴痘图片,精确度提升

目录

一、前言:

二、前期准备:

1、设备查看

2、导入收集到的数据集

3、数据预处理

4、划分数据集(8:2)

5、加载数据集

三、搭建神经网络

四、训练模型

1、设置超参数

2、编写训练函数

3、编写测试函数

4、正式训练

五、可视化结果

六、预测

1、预测函数

2、指定图片进行预测

七、模型保存

八、运行结果展示:

①使用原有的网络模型,测试集的精确度基本上在82%左右。

②在原有网络模型的基础上,添加了relu激活函数,

③减小学习率,

④增大学习率,


一、前言:

本篇博文,主要使用猴痘数据集,来训练模型,大部分的代码还是之前的很类似,不同的地方在意,使用的模型参数不同,模型也都是类似的。这篇文章里面,你可以学会如何保存训练好的模型,如何使用保存的的模型进行预测。

如以往一样,可以先大概看下目录,你的脑海会有大概得流程。

二、前期准备:

1、设备查看

# 1、设备相关
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)

2、导入收集到的数据集

我的数据集文件夹是这样的:

①一个是带有猴痘的图片的文件夹;②一个是其他痘的文件夹;

# 2、导入数据
data_dir = './data'
data_dir = pathlib.Path(data_dir)  # 获取到文件data的名称

data_paths = list(data_dir.glob('*'))  # 获取到文件夹data下面子文件夹的名称  [PosixPath('data/Others'), PosixPath('data/Monkeypox')]
classNames = [str(path).split('/')[1] for path in data_paths]  # 获取到子文件夹的名称  ['Others', 'Monkeypox']

3、数据预处理

# 3、数据处理
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

total_data = datasets.ImageFolder('./data',
                                  transform=train_transforms)
# print(total_data.class_to_idx)  # {'Monkeypox': 0, 'Others': 1}  total_data.class_to_idx 是一个存储了数据集类别和对应索引的字典。

4、划分数据集(8:2)

# 4、划分数据集
train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size, test_size])
# print(len(train_dataset), len(test_dataset))   # 1713  429

5、加载数据集

# 5、加载数据集
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
print('准备工作结束。。。。')

三、搭建神经网络

网络图如下:

# 猴痘的模型
class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        '''
            默认stride为1;  padding为0
        '''
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)

        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2, 2)

        self.conv3 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn3 = nn.BatchNorm2d(24)

        self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2, 2)

        self.fc = nn.Linear(24*50*50, 2)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool1(x)
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool2(x)
        x = x.view(-1, 24*50*50)
        x = self.fc(x)
        x = self.relu(x)
        return x


model = Network_bn().to(device)
print(model)

四、训练模型

1、设置超参数

# 三、训练模型
# 1、 设置超参数
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
learn_rate = 1e-4  # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

2、编写训练函数

# 2、编写训练函数
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)   # 训练集大小
    num_batches = len(dataloader)    # 批次数目

    train_acc, train_loss = 0, 0
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        # 计算预测误差
        pred = model(X)   # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出与真实值之间的差距。

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()   # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc /= size
    train_loss /= num_batches
    return train_acc, train_loss

3、编写测试函数

# 3、 编写测试函数


def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集大小
    num_batches = len(dataloader)  # 批次数目

    test_acc, test_loss = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算损失
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
            test_loss += loss.item()
        test_acc /= size
        test_loss /= num_batches
    return test_acc, test_loss

4、正式训练

# 正式训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}'
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

五、可视化结果

# 结果可视化
warnings.filterwarnings('ignore')  # 忽略警告信息
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12,3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label="Training Acc")
plt.plot(epochs_range, test_acc, label="Test Acc")
plt.legend(loc='lower right')
plt.title('Training and Validation Acc')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label="Training Loss")
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')

plt.savefig("/data/jupyter/deepinglearning_train_folder/p04_weather/resultImg.jpg")
plt.show()

六、预测

1、预测函数

classes = list(total_data.class_to_idx)
print('classes:', classes)

# 预测训练集中的某张图片
predict_one_image(image_path='./data/Monkeypox/M01_01_00.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

2、指定图片进行预测

# 预测函数
def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)

    model.eval()
    output = model(img)

    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

七、模型保存

# 模型保存
PATH = './model.pth'  # 保存的模型
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

(我是在具有GPU的服务器上训练的模型)

八、运行结果展示:

①使用原有的网络模型,测试集的精确度基本上在82%左右。

②在原有网络模型的基础上,添加了relu激活函数,

可使得精度提高2%左右。但是训练精度减少了。

③减小学习率,

使得测试精度,直线下降

④增大学习率,

也可以使得测试精确度提高2%左右,还会使得训练的精确度更好,达到98.7%

相关推荐

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-03-29 01:14:02       98 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-03-29 01:14:02       106 阅读
  3. 在Django里面运行非项目文件

    2024-03-29 01:14:02       87 阅读
  4. Python语言-面向对象

    2024-03-29 01:14:02       96 阅读

热门阅读

  1. 每日OJ题_栈②_力扣844. 比较含退格的字符串

    2024-03-29 01:14:02       50 阅读
  2. 在nodejs中打开浏览器网页

    2024-03-29 01:14:02       40 阅读
  3. mysql select

    2024-03-29 01:14:02       36 阅读
  4. OCR识别文字示例

    2024-03-29 01:14:02       43 阅读
  5. 数组常见算法代码总结

    2024-03-29 01:14:02       43 阅读
  6. 02 React 组件使用

    2024-03-29 01:14:02       45 阅读
  7. vue的插槽

    2024-03-29 01:14:02       48 阅读
  8. C语言-数据在内存存储

    2024-03-29 01:14:02       36 阅读
  9. Linux小程序: 手写自己的shell

    2024-03-29 01:14:02       40 阅读