YOLOv9改进策略 :neck优化 | 路径融合GFPN,小目标到大目标一网打尽 | 轻骨干重Neck的轻量级目标检测器GiraffeDet

  💡💡💡本文改进内容:设计了一种新的路径融合GFPN:包含跳层与跨尺度连接,改进思路来自ICLR2022 GiraffeDet的核心思想。

 💡💡💡GFPN和六个检测头结合,这种跳层与跨尺度连接的能够大幅提升小目标检测性能

 改进结构图如下:

《YOLOv9魔术师专栏》将从以下各个方向进行创新:

原创自研模块多组合点优化注意力机制卷积魔改block&多尺度融合结合损失&IOU优化上下采样优化 SPPELAN & RepNCSPELAN4优化小目标性能提升】前沿论文分享训练实战篇】

订阅者通过添加WX: AI_CV_0624,入群沟通,提供改进结构图等一系列定制化服务。

订阅者可以申请发票,便于报销 

 YOLOv9魔术师专栏

💡💡💡为本专栏订阅者提供创新点改进代码,改进网络结构图,方便paper写作!!!

💡💡💡适用场景:红外、小目标检测工业缺陷检测医学影像遥感目标检测低对比度场景

💡💡💡适用任务:所有改进点适用【检测】【分割】【pose】【分类】

💡💡💡全网独家首发创新,【自研多个自研模块】【多创新点组合适合paper 】!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

🚀🚀🚀 本项目持续更新 | 更新完结保底≥80+ ,冲刺100+ 🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

⭐⭐⭐专栏涨价趋势 99 ->199->259->299,越早订阅越划算⭐⭐⭐

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.GiraffeDet介绍

论文:https://arxiv.org/abs/2202.04256

摘要:在传统的目标检测框架中,继承自图像识别模型的骨干主体提取深度潜在特征,然后由颈部模块融合这些潜在特征来获取不同尺度的信息。由于目标检测的分辨率远大于图像识别,因此主干的计算代价往往占主导地位。这种重主干设计范式主要是由于将图像识别模型转移到目标检测时的历史遗留问题,而不是目标检测的端到端优化设计。在这项工作中,我们表明,这种范式确实导致次优的目标检测模型。为此,我们提出了一个新的重颈范式,GiraffeDet,一个类似长颈鹿的网络,用于有效的目标检测。GiraffeDet使用了一个非常轻量的主干和一个非常深而大的颈部模块,这鼓励了不同空间尺度之间密集的信息交换,同时也鼓励了不同层次的潜在语义。这种设计范式使检测器即使在网络的早期阶段,也能以同样的优先级处理高级语义信息和低级空间信息,提高了检测任务的效率。对多个流行目标检测基准的数值评估表明,在广泛的资源约束范围内,GiraffeDet始终优于以前的SOTA模型。

        本文是阿里巴巴在目标检测领域的工作(已被ICLR2022接收),提出了一种新颖的类“长颈鹿”的GiraffeDet架构,它采用了轻骨干、重Neck的架构设计范式。所提GiraffeDet在COCO数据集上取得了比常规CNN骨干更优异的性能,取得了54.1%mAP指标,具有更优异的处理目标大尺度变化问题的能力。

         本文提出了GiraffeDet用于高效目标检测,giraffe包含轻量space-to-depth chain、Generalized-FPN以及预测网络

        FPN旨在对CNN骨干网络提取的不同分辨率的多尺度特征进行融合。上图给出了FPN的进化,从最初的FPN到PANet再到BiFPN。我们注意到:这些FPN架构仅聚焦于特征融合,缺少了块内连接。因此,我们设计了一种新的路径融合GFPN:包含跳层与跨尺度连接,见上图d。

3.GFPN加入到YOLOv9

3.1新建py文件,路径为models/block/CSPStage.py

后续开源

3.2修改yolo.py

1)首先进行引用

from models.block.CSPStage import CSPStage

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入CSPStage

        if m in {
            Conv, AConv, ConvTranspose, 
            Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
            RepNCSPELAN4, SPPELAN,CSPStage}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, SPPCSPC,CSPStage}:
                args.insert(2, n)  # number of repeats
                n = 1

3.3 yolov9-c-CSPStage.yaml

相关推荐

最近更新

  1. TCP协议是安全的吗?

    2024-03-28 22:44:02       16 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2024-03-28 22:44:02       16 阅读
  3. 【Python教程】压缩PDF文件大小

    2024-03-28 22:44:02       15 阅读
  4. 通过文章id递归查询所有评论(xml)

    2024-03-28 22:44:02       18 阅读

热门阅读

  1. LeetCode 134. 加油站

    2024-03-28 22:44:02       19 阅读
  2. Redis数据库

    2024-03-28 22:44:02       18 阅读
  3. 【华为OD机试】考勤信息【C卷|100分】

    2024-03-28 22:44:02       20 阅读
  4. Milvus+ATTU环境搭建

    2024-03-28 22:44:02       25 阅读
  5. 深度挖掘Scrapy爬虫框架:进阶应用技巧

    2024-03-28 22:44:02       19 阅读
  6. 【华为OD机试】园区参观路径【C卷|100分】

    2024-03-28 22:44:02       18 阅读
  7. Redis基础命令集详解

    2024-03-28 22:44:02       18 阅读
  8. 大数据与AI:开启智能时代的融合之旅

    2024-03-28 22:44:02       18 阅读
  9. C 练习实例85-判断一个素数能被几个9整除

    2024-03-28 22:44:02       21 阅读
  10. Leetcode 665. 非递减数列

    2024-03-28 22:44:02       17 阅读
  11. 进程与线程(Thread)

    2024-03-28 22:44:02       18 阅读