扩散模型(1)代码

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from diffusers import DDPMScheduler, UNet2DModel
from matplotlib import pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {
     device}')
Using device: cuda
dataset = torchvision.datasets.MNIST(root="mnist/",train=True,download=True,transform=torchvision.transforms. ToTensor())
train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
x,y =next(iter(train_dataloader))
print('Input shape:', x.shape)
Input shape: torch.Size([8, 1, 28, 28])
print('Lable shape:', y.shape)
Lable shape: torch.Size([8])
plt.imshow(torchvision.utils.make_grid(x)[0], cmap='Greys')
<matplotlib.image.AxesImage at 0x1d31128f7c0>

在这里插入图片描述

扩散模型之退化过程 控制内容损坏程度,引入一个参数控制输入的“噪声量”

def corrupt(x, amount):
    # 根据amount为输入x加入噪声
    # 如果amount=0则返回输入,不做任何更改,如果amount=1那么就返回一个纯粹的噪声
    noise = torch.rand_like(x)
    amount = amount.view(-1, 1, 1, 1)
    # noisy_like = (1-amount)*x+amount*noise
    return x*(1-amount)+amount*noise
fig, axs = plt.subplots(2,1,figsize=(12,5))
axs[0].set_title('Input data')
axs[0].imshow(torchvision.utils.make_grid(x)[0], cmap='Greys')
# 加入噪声
amount = torch.linspace(0,1,x.shape[0])
noise_x = corrupt(x,amount)
axs[1].set_title('Corrupted data (----amount increases ---->)')
axs[1].imshow(torchvision.utils.make_grid(noise_x)[0], cmap='Greys')
<matplotlib.image.AxesImage at 0x1d3112ef400>

在这里插入图片描述

class BasicUnet(nn.Module):
    def __init__(self, in_channels=1, out_channels=1):
        super().__init__()
        self.down_layers = torch.nn.ModuleList(
            [
             nn.Conv2d(in_channels, 32, kernel_size=5, padding=2),
             nn.Conv2d(32, 64, kernel_size=5, padding=2),
             nn.Conv2d(64, 64, kernel_size=5, padding=2),
            ]
        )
        # 下行路径
        self.up_layers = torch.nn.ModuleList(
            [

             nn.Conv2d(64, 64, kernel_size=5, padding=2),
             nn.Conv2d(64, 32, kernel_size=5, padding=2),
             nn.Conv2d(32, out_channels, kernel_size=5, padding=2),
            ]
        )
        # 上行路径
        self.act = nn.SiLU()# 激活函数
        self.downscale = nn.MaxPool2d(2)
        self.upscale = nn.Upsample(scale_factor=2)

    def forward(self, x):
        h = []
        for i, l in enumerate(self.down_layers):
            x = self.act(l(x)) # 通过运算层与激活函数
            if i < 2: # 选择下行路径的前两层
                h.append(x)  # 供残差连接使用的数据
                x = self.downscale(x) # 选择下采样适配下一层的输入

        for i, l in enumerate(self.up_layers):
            if i > 0:
                x = self.upscale(x)
                x += h.pop()
            x = self.act(l(x))

        return  x
net = BasicUnet()
x = torch.rand(8, 1, 28, 28)
net(x).shape
torch.Size([8, 1, 28, 28])
sum([p.numel() for p in net.parameters()])
309057

diffusion model有什么用-也就是说给定一个带噪声的noise_x的输入,扩散模型的输出其对原始输入x的最佳预测。

需要通过均方误差对预测值与真实值进行比较

# 流程:1、获取数据 2、添加随机噪声 3、数据输入模型 4、预测和初始图像进行比较 计算损失更新模型的参数
batch_size = 128
train_dataloader = DataLoader(dataset,batch_size=batch_size, shuffle=True)
n_epochs = 3
net = BasicUnet()
net.to(device)
# 损失函数
loss_fn = nn.MSELoss()
#优化器
opt = torch.optim.Adam(net.parameters(),lr=1e-3)
losses = []
for epoch in range(n_epochs):
    for x,y in train_dataloader:
        x = x.to(device)
        noise_amount  = torch.rand(x.shape[0]).to(device)
        noisy_x = corrupt(x,noise_amount) # 创建带噪声的NOISY_X
        # 得到模型的预测结果
        pred = net(noisy_x)

        loss = loss_fn(pred, x)

        opt.zero_grad()
        loss.backward()
        opt.step()
        # 储存损失,供后期查看
        losses.append(loss.item())

    avg_loss = sum(losses[-len(train_dataloader):])/len(train_dataloader)
    print(f'Finished epoch {
     epoch}. Average loss for this epoch:{
     avg_loss:05f}')
    plt.plot(losses)
    plt.ylim(0,0.1);

Finished epoch 0. Average loss for this epoch:0.027834
Finished epoch 1. Average loss for this epoch:0.021065
Finished epoch 2. Average loss for this epoch:0.019122

在这里插入图片描述

# 可视化模型在“带噪“输入上的表现
# 初始数据
x, y = next(iter(train_dataloader))
x = x[:8]
# 在(0-1)之间取噪声量
amount = torch.linspace(0,1, x.shape[0])
noised_x = corrupt(x, amount)
# 模型预测结果
with torch.no_grad():
    preds = net(noised_x.to(device)).detach().cpu()

# 绘图
fig,axs = plt.subplots(3, 1, figsize=(12,7))
axs[0].set_title('Input data')
axs[0].imshow(torchvision.utils.make_grid(x)[0].clip(0, 1), cmap='Greys')

axs[1].set_title('Corrupted data')
axs[1].imshow(torchvision.utils.make_grid(noised_x)[0].clip(0, 1), cmap='Greys')

axs[2].set_title('prediction data')
axs[2].imshow(torchvision.utils.make_grid(preds)[0].clip(0, 1), cmap='Greys')
<matplotlib.image.AxesImage at 0x1d3113997c0>

在这里插入图片描述

采样过程

模型在高噪声量下的预测不好该怎么办呢?
从完全随机噪声开始,检测预测效果,然后朝着预测效果移动一部分,比如20%,可能新的预测效果就比上一侧的预测效果好一点,那么么就可以继续向前移动。

# 采样策略 把采样过程拆解为5步,每次只前进一步
n_steps = 5
x = torch.rand(8,1,28,28).to(device)
step_history = [x.detach().cpu()]
pred_output_history = []
for i in range(n_steps):
    with torch.no_grad():
        pred = net(x) # 预测去噪后图像
        pred_output_history.append(pred.detach().cpu()) # 保存模型

        mix_factor = 1/(n_steps - i) # 设置朝着预测方向移动多少
        x = x*(1-mix_factor)+pred*mix_factor # 移动过程
        step_history.append(x.detach().cpu()) # 记录每一次移动


fig, axs = plt.subplots(n_steps, 2, figsize=(9,4), sharex=True)
axs[0,0].set_title('x (model input)')
axs[0,1].set_title('model prediction')

for i in range(n_steps):
    axs[i,0].imshow(torchvision.utils.make_grid(step_history[i])[0].clip(0,1), cmap='Greys')
    axs[i,1].imshow(torchvision.utils.make_grid(pred_output_history[i])[0].clip(0,1), cmap='Greys')

在这里插入图片描述

n_steps = 20
x = torch.rand(64,1,28,28).to(device)

for i in range(n_steps):
    noise_amount = torch.ones((x.shape[0],)).to(device) * (1-(i/n_steps))# 噪声从高到低
    with torch.no_grad():
        pred = net(x)
        mix_factor = 1/(n_steps - i) # 设置朝着预测方向移动多少
        x = x*(1-mix_factor)+pred*mix_factor # 移动过程
fig, ax = plt.subplots(1, 1, figsize=(12,12))
ax.imshow(torchvision.utils.make_grid(x.detach().cpu(),nrow=8)[0].clip(0,1), cmap='Greys')
<matplotlib.image.AxesImage at 0x1d3811f7130>

在这里插入图片描述

退化过程

在每个时间步都为输入图像添加少量噪声的退化过程。

如果在某个时间步给定 x t − 1 x_{t-1} xt1,就可以得到一个噪声稍微增强的 x t x_{t} xt:

( x t ∣ x t − 1 ) = N ( x t ; 1 − β i x t − 1 , β t I ) q ( x 1 ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) \left(x_{t} \mid x_{t-1}\right)=\mathcal{N}\left(x_{t} ; \sqrt{1-\beta_{i}} x_{t-1}, \beta_{t} I\right) q\left(x_{1} \mid x_{0}\right)=\prod_{t=1}^{T} q\left(x_{t} \mid x_{t-1}\right) (xtxt1)=N(xt;1βi xt1,βtI)q(x1x0)=t=1Tq(xtxt1)

你可以这样理解,取 x t − 1 x_{t-1} xt1,。给它一个系数 1 − β t \sqrt{1-\beta_{t}} 1βt ,然后将其与一个带有系数 β t \beta_{t} βt的噪声相加。其中, β \beta β是我们根据调度器为每个时划设定的参数,用于决定在每个时间步添加的噪声量。我们并不想通过把这个推演重复 500 次来得到,而是希望利用另一个公式,根据给出的 x 0 x_{0} x0计算得到任意时刻 t t t x t x_{t} xt:
q ( x t ∣ x 0 ) = N ( x t ; α i x 0 , ( 1 − α ˉ t ) I ) ;  其中  α ˉ t = ∏ T α i , α i = 1 − β i q\left(x_{t} \mid x_{0}\right)=\mathcal{N}\left(x_{t} ; \sqrt{\alpha_{i}} x_{0},\left(1-\bar{\alpha}_{t}\right) \boldsymbol{I}\right) ; \text { 其中 } \bar{\alpha}_{t}=\prod^{T} \alpha_{i}, \alpha_{i}=1-\beta_{i} q(xtx0)=N(xt;αi x0,(1αˉt)I); 其中 αˉt=Tαi,αi=1βi

相关推荐

  1. Pytorch实现扩散模型【DDPM代码解读篇1

    2023-12-05 22:44:03       12 阅读
  2. Pytorch实现扩散模型【DDPM代码解读篇2】

    2023-12-05 22:44:03       13 阅读
  3. 扩散模型学习笔记

    2023-12-05 22:44:03       13 阅读

最近更新

  1. TCP协议是安全的吗?

    2023-12-05 22:44:03       18 阅读
  2. 阿里云服务器执行yum,一直下载docker-ce-stable失败

    2023-12-05 22:44:03       19 阅读
  3. 【Python教程】压缩PDF文件大小

    2023-12-05 22:44:03       18 阅读
  4. 通过文章id递归查询所有评论(xml)

    2023-12-05 22:44:03       20 阅读

热门阅读

  1. Redis-Redis多级缓存架构(实践)

    2023-12-05 22:44:03       42 阅读
  2. 分析一段文字中重复词组,英文版

    2023-12-05 22:44:03       39 阅读
  3. docker 中的–mount 和-v 参数有啥区别

    2023-12-05 22:44:03       32 阅读
  4. centos7 安装docker 步骤整理

    2023-12-05 22:44:03       49 阅读
  5. 鱼香ROS一键安装命令(支持微信、docker、ros等)

    2023-12-05 22:44:03       44 阅读