STM32杂交版(HAL库、音乐盒、闹钟、点阵屏、温湿度)

一、设计描述        

        本设计精心构建了一个以STM32MP157A高性能单片机为核心控制单元的综合性嵌入式系统。该系统巧妙融合了蜂鸣器、数码管显示器、点阵屏、温湿度传感器、LED指示灯以及按键等多种外设模块,形成了一个功能丰富、操作便捷的杂交版智能设备。通过串口通信,用户可以灵活地切换系统的工作模式,轻松实现闹钟、音乐盒播放及温湿度监测与调控等基本功能。

核心硬件

  • 主控单元:采用STM32MP157A单片机,凭借其强大的处理能力和丰富的外设接口,为系统提供了坚实的硬件基础。

软件平台

  • 开发工具:利用STM32CUBEIDE这一直观易用的集成开发环境,极大地提升了软件编程与调试的效率,确保了系统软件的稳定可靠。

系统功能亮点

  1. 模式灵活切换:通过串口通信,用户可以轻松地在闹钟、音乐盒播放及温湿度监测三种模式之间自由切换,满足不同场景下的使用需求。

  2. 动态信息显示:点阵屏作为系统的信息展示窗口,能够根据当前的工作模式显示相应的汉字(如“钟”代表闹钟模式,“音”代表音乐盒模式,“传”可视为温湿度监测的简化标识),为用户提供了直观的操作反馈。

  3. 按键交互体验:设计中充分考虑了用户的交互体验,通过按键即可在各模式下执行对应的功能操作,如音乐盒的速度与音量调节、歌曲切换、暂停/播放控制,以及闹钟的时间调整、设置多个闹钟、关闭闹钟等。

  4. 温湿度智能调控:系统内置温湿度传感器,能够实时监测环境状况,并通过串口接收用户指令调节温湿度的上下限阈值。一旦环境参数超出设定范围,LED指示灯将亮起作为边界提示,帮助用户及时采取措施。

二、基本配置信息

         音乐盒在之前做过所以配置不做改变:STM32音乐盒

        

三、STM32CUBEIDE配置

1、定时器--100ms

2、PWM配置(蜂鸣器 -- PB6)

3. 串口配置

注意针脚

4. IIC配置(温湿度,数码管,点阵屏)

5. GPIO配置(LED和按键)

6. NVIC

四、程序编写

(1)音乐盒代码

        音乐盒在之前已经写过,所以这里不再重复之前的操作,我们将串口和模式转换加进去。

         STM32音乐盒

        串口音乐控制函数


//串口音乐控制函数
void music_kz(){
	  if(EN_music == 1)//启动
		  play_music(list,Low_volume);
	  else
		  __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量



	if(strcmp("music volume increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 10;
	}

	if(strcmp("music volume reduction",(char *)uart4_data)==0){
		Low_volume = Low_volume - Low_volume_cnt;
		if(Low_volume <= 0)
			Low_volume = 0;
	}


	if(strcmp("music speed increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
	}
	if(strcmp("music speed reduction",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i--;
		music_speed_i = music_speed_kz(music_speed_i);
	}

	if(strcmp("music next song",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		list++;
		if(list > list_max){
			list = list_max;
		}
	}
	if(strcmp("music previous song",(char *)uart4_data)==0){
		list--;
		uart4_data[0] = '0';
		if(list < 0){
			list = 0;
		}
	}

	if(strcmp("music start",(char *)uart4_data)==0){
		EN_music = 1;
	}
	if(strcmp("music stop",(char *)uart4_data)==0){
		EN_music = 0;
	}


}

按键模式控制

用mode变量代表模式,后面三个按键同理。


void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */

	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
	{

		//每次按下解决 音量�??????? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {

		shi_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		if(shi_clock>=24)
		{
			shi_clock=0;
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

(2)模式切换

        mode变量切换


void uart_mode(){

	if(strcmp("mode = music",(char *)uart4_data)==0){
		mode = 0;
	}
	if(strcmp("mode = clock",(char *)uart4_data)==0){
		mode = 1;
	}
	if(strcmp("mode = sensor",(char *)uart4_data)==0){
		mode = 2;
	}
}

点阵屏字库


uint8_t DZP_data[6][34]={
		{0xAA,0x55,
		0xFD,0xFF,0xFE,0xFF,0xC0,0x07,0xFF,0xFF,0xF7,0xDF,0xFB,0xBF,0x00,0x01,0xFF,0xFF,
		0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF},//音

		{0xAA,0x55,
		0xEF,0xDF,0xEF,0xDF,0xC3,0xDF,0xDF,0xDF,0xBE,0x03,0x42,0xDB,0xEE,0xDB,0xEE,0xDB,
		0x02,0xDB,0xEE,0x03,0xEE,0xDB,0xEF,0xDF,0xEB,0xDF,0xE7,0xDF,0xEF,0xDF,0xFF,0xDF},//钟//1//

		{0xAA,0x55,
		0xF7,0xBF,0xF7,0xBF,0xF7,0xBF,0xEC,0x07,0xEF,0xBF,0xCF,0x7F,0xC8,0x01,0xAF,0x7F,
		0x6E,0xFF,0xEC,0x07,0xEF,0xF7,0xEE,0xEF,0xEF,0x5F,0xEF,0xBF,0xEF,0xDF,0xEF,0xDF}//传//2//

};

点阵屏显示

		if(mode_n != mode){
			mode_n = mode;
			for(int i = 0; i<34;i++){
			//printf("afgsbgafdffag");
				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
				HAL_Delay(2);
			}
		}

(3)闹钟代码编写

        1. 基础变量

         main.c


//数码管闹钟基础变量
extern int buf[8];
extern int shi_shi;
extern int shi_ge ;
extern int fen_shi;
extern int fen_ge ;
extern int miao_shi ;
extern int miao_ge ;

extern int miao ;
extern int shi ;
extern int fen;
//闹钟保存数组
extern int alarm_clock_array[20][4];
extern int alarm_clock_array_cnt;

        stm32mp1xx_it.c 基础变量



//数码管闹钟基础设置
int smg_number[10] = {0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xE0,0xFE,0xF6};
int buf[8] = {0};

//闹钟保存数组
int alarm_clock_array[20][4] = {0};
int alarm_clock_array_cnt = 0;
//实时时钟信息
int shi_shi = 0;
int shi_ge = 0;
int fen_shi = 0;
int fen_ge = 0;
int miao_shi = 0;
int miao_ge = 0;
int miao = 0;
int shi = 0;
int fen = 0;

int EN_clock = 0;//闹钟设置使能
extern int en_clock;//用于控制闹钟响铃

//闹钟设置信息
int shi_shi_clock = 0;
int shi_ge_clock = 0;
int fen_shi_clock = 0;
int fen_ge_clock = 0;
int miao_shi_clock = 0;
int miao_ge_clock = 0;
int miao_clock = 0, shi_clock = 0, fen_clock = 0;

        2. TIM2定时器


void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */
	if(EN_music == 1)
		time_100ms_cnt++;
	else
		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数

	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
		time_100ms_cnt = 0;
		flag = 1;	//发�?�音节结束信�???????
	}


	//数码�????
	static int smg_time_100ms = 0;
	smg_time_100ms++;
	if(smg_time_100ms>=10){
		miao++;
		smg_time_100ms = 0;
	}


	if (miao>=60)
	{
		miao=0;
		fen++;
		if(fen>=60)
		{
			fen=0;
			shi++;
			if(shi>=24)
			{
				shi=0;
			}
		}
	}


	if(miao >= 60){
		miao = miao-60;
		fen++;
	}
	if(fen>=60){
		fen = fen-60;
		shi ++;
	}
	if(shi>= 24){
		shi = shi -24;

	}


	miao_shi=miao/10;
	miao_ge=miao%10;

	fen_shi=fen/10;
	fen_ge=fen%10;

	shi_shi=shi/10;
	shi_ge=shi%10;


	if(EN_clock == 0){
	buf[0]=smg_number[shi_shi];
	buf[1]=smg_number[shi_ge];
	buf[3]=smg_number[fen_shi];
	buf[4]=smg_number[fen_ge];
	buf[6]=smg_number[miao_shi];
	buf[7]=smg_number[miao_ge];
	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_SET);
	}

  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

        3. 按键控制设置闹钟和保存闹钟        


void EXTI9_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI9_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 0){//确保数据稳定
		EN_music = !EN_music;
	}

	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 1 ){//确保数据稳定
		if(EN_clock == 1){
			//闹钟设置成功
			alarm_clock_array[alarm_clock_array_cnt][0] = shi_clock;
			alarm_clock_array[alarm_clock_array_cnt][1] = fen_clock;
			alarm_clock_array[alarm_clock_array_cnt][2] = miao_clock;
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;	//默认播放第三首音�????
			alarm_clock_array_cnt++;
			if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
			EN_clock = 0;
		}
		else if(EN_clock == 0){
			//设置闹钟
			shi_shi_clock = shi_shi;
			shi_ge_clock = shi_ge;
			fen_shi_clock = fen_shi;
			fen_ge_clock = fen_ge;
			miao_shi_clock = 0;
			miao_ge_clock = 0;
			miao_clock = 0;
			shi_clock = shi;
			fen_clock = fen;
			EN_clock = 1;
		}
	}






  /* USER CODE END EXTI9_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
  /* USER CODE BEGIN EXTI9_IRQn 1 */

  /* USER CODE END EXTI9_IRQn 1 */
}

        4. 时分按键+


void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */

	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
	{

		//每次按下解决 音量�??????? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {

		shi_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		if(shi_clock>=24)
		{
			shi_clock=0;
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

/**
  * @brief This function handles EXTI line1 interrupt.
  */
void EXTI1_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI1_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0 && mode == 0)//确保数据稳定
		{
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_1)==GPIO_PIN_RESET && mode == 1) {
		fen_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		if(fen_clock>=60)
		{
			fen_clock=0;
			shi_clock++;
			fen_shi_clock=fen_clock/10;
			fen_ge_clock=fen_clock%10;
			shi_shi_clock=shi_clock/10;
			shi_ge_clock=shi_clock%10;
			if(shi_clock>=24)
			{
				shi_clock=0;
			}
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI1_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
  /* USER CODE BEGIN EXTI1_IRQn 1 */

  /* USER CODE END EXTI1_IRQn 1 */
}

/**
  * @brief This function handles EXTI line2 interrupt.
  */
void EXTI2_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI2_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0 && mode == 0)//确保数据稳定
		{
			list++;
			if(list > list_max){
				list = 0;
			}
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_2)==GPIO_PIN_RESET && mode == 1) {
			//在此处关闭闹�????
			en_clock = 0;
		}
  /* USER CODE END EXTI2_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
  /* USER CODE BEGIN EXTI2_IRQn 1 */

  /* USER CODE END EXTI2_IRQn 1 */
}

        5. 时钟相加函数(将后三的时分秒加入左三的对应时分秒)

//通过输入不同的n,返回shi fen miao
int clock_compute(int time_shi,int time_fen,int time_miao,int add_shi,int add_fen,int add_miao,int n){

	time_miao = time_miao + add_miao;
	time_fen = time_fen + time_miao/60;
	time_miao = time_miao % 60;

	time_fen = time_fen + add_fen;
	time_shi = time_shi + time_fen / 60;
	time_fen = time_fen%60;

	time_shi = time_shi + add_shi;
	time_shi = time_shi%24;

	if(n == 0) return time_shi;
	if(n == 1) return time_fen;
	if(n == 2) return time_miao;

	return -1;
}

        6. 提取对应字符串后两位数字


// 函数定义:从字符串中提取两位数字
int extract_two_digits(const char *str, const char *prefix, int *value) {
    char *pos = strstr(str, prefix); // 查找前缀的位�?????
    if (pos == NULL) return 0; // 如果没找到前�?????,返�?????0表示失败

    // 跳过前缀的长度,找到数字�?????始的位置
    pos += strlen(prefix);

    // �?????查接下来的两个字符是否是数字
    if (pos[0] >= '0' && pos[0] <= '9' && pos[1] >= '0' && pos[1] <= '9') {
        // 转换字符为数�?????
        *value = (pos[0] - '0') * 10 + (pos[1] - '0');
        return 1; // 成功提取,返�?????1
    }

    return 0; // 提取失败,返�?????0
}

        7. 串口设置目前时钟,定时闹钟,延时闹钟


//判断是否到底闹钟
int en_clock = 0;//用于控制闹钟响铃
int en_clock_cnt = 0;
int clock_end[3] = {0};//记录闹钟无人时关闭的时间
//串口设置闹钟
void uart_clock(){
	int ci = 0;
	int ci_n = 0;

	//ci = number_char_come(uart4_data,(uint8_t *)"clock shi = ",2);

	ci = extract_two_digits((char *)uart4_data, (char *)"clock shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		shi = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock fen = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		fen = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock miao = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		miao = ci_n;
	}

	//设置�?????个多少时间后的闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay shi = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,ci_n,0,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,ci_n,0,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,ci_n,0,0,2);
		alarm_clock_array_cnt++;
	}
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay fen = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,ci_n,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,ci_n,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,ci_n,0,2);
		alarm_clock_array_cnt++;
	}

	ci = extract_two_digits((char *)uart4_data, "clock delay miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,0,ci_n,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,0,ci_n,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,0,ci_n,2);
		alarm_clock_array_cnt++;
	}

	// time shi = 12;fen = 10;miao = 12;music = 1;
	ci = 0;
	ci = ci + extract_two_digits((char *)uart4_data, "time shi = ", &alarm_clock_array[alarm_clock_array_cnt][0]);
	ci = ci + extract_two_digits((char *)uart4_data, ";fen = ", &alarm_clock_array[alarm_clock_array_cnt][1]);
	ci = ci + extract_two_digits((char *)uart4_data, ";miao = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	//ci = ci + extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	if(ci == 3){
		//完美对应
		uart4_data[0] = '1';
		ci = extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][3]);
		if(ci > list_max && ci<0) //如果大于音乐总数
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;//默认�?????3

		alarm_clock_array_cnt++;
	}


	if(strcmp("clock delay list",(char *)uart4_data)==0){

		uart4_data[0] = '0';
		for(int i = 0; i< alarm_clock_array_cnt;i++){
			if(alarm_clock_array[i][0] != -1 && alarm_clock_array[i][1] != -1 && alarm_clock_array[i][2] != -1)
			printf("%d : time -> %d/%d/%d  \r\n",i,	alarm_clock_array[i][0],
															alarm_clock_array[i][1],
															alarm_clock_array[i][2]
															);
		}
	}

	//读取关闭第几位闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock stop list = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock stop list = ", &ci_n);
	if(ci == 1){
		alarm_clock_array[ci_n][0] = -1;
		alarm_clock_array[ci_n][1] = -1;
		alarm_clock_array[ci_n][2] = -1;
	}

	//关闭闹钟
	if(strcmp("clock stop stop",(char *)uart4_data)==0){
		en_clock = 0;
	}


	if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
}

        8. 闹钟实现和停止(数码管显示)


void alarm_clock(){
    //时钟显示(数码管)
	static int pos = 0;
	HAL_I2C_Mem_Write(&hi2c1,0x70,0X10+pos, 1, (uint8_t*)&buf[pos],1,100);
	HAL_Delay(1);
	pos++;
	if(pos == 3 && pos == 6) pos++;
	if(pos == 8) pos = 0;


	uart_clock();//调用串口控制

	for(int j=0;j<alarm_clock_array_cnt && en_clock == 0;j++){
		//int cnt_clock = 0;
		if(alarm_clock_array[j][0] == shi && alarm_clock_array[j][1] == fen && alarm_clock_array[j][2] == miao) {
			en_clock_cnt = j;
			en_clock = 1;
			clock_end[0] = clock_compute(shi,fen,miao,0,0,30,0);
			clock_end[1] = clock_compute(shi,fen,miao,0,0,30,1);
			clock_end[2] = clock_compute(shi,fen,miao,0,0,30,2);
			break;
		}
	}

	//当闹钟响�?????30S
	if(shi == clock_end[0] && fen == clock_end[1] && miao == clock_end[2]){
		en_clock = 0;//关闭闹钟
		//EN_music = 1;
	}

	if(en_clock == 1 ){
			motor(10);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		}
		else{
			HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
		}

}

(4)温湿度代码编写

        1. 温湿度基础变量     


uint8_t add1=0xFE,add2=0xE5,add3=0xE3;
//0xFE复位 0xE5启动湿度转换 0xE3启动温度转换
uint16_t RH_Code,RH_Code_low=0,RH_Code_high=0;
uint16_t Temp_Code,Temp_Code_low=0,Temp_Code_high=0;

int humidity_min = 50;//能仍受最低干燥程度
int temperature_max = 50;//能仍受的最高温度
int en_t = 0; //温度使能
int en_r = 0; //湿度使能

        2. 温湿度计算


//计算出温湿度
void Temperature_humidity(){
	//湿度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add2, 1,100);
			  //写命�??????? ox40里面写命�??????? 0xe5 启动湿度转换
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &RH_Code, 1, 100);
			  //读命�??????? �???????0x40读取出湿度的数据 存入变量RH_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  RH_Code_low=(RH_Code & 0xff);
			  RH_Code_high=(RH_Code >> 8)& 0xff;
			  RH_Code=(RH_Code_low << 8)+RH_Code_high;

			  //温度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add3, 1,100);
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &Temp_Code, 1, 100);
			  //读命�??????? �???????0x40读取出温度的数据 存入变量Temp_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  Temp_Code_low=(Temp_Code & 0xff);
			  Temp_Code_high=(Temp_Code >> 8)& 0xff;
			  Temp_Code=(Temp_Code_low << 8)+Temp_Code_high;

			  Temp_Code=17572*Temp_Code/65535-4685;//扩大�???????百�??
			  RH_Code=125*RH_Code/65536-6;//计算出湿度�??
			  //printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
			  //串口输出温湿�???????
			  HAL_Delay(2);
}

        3. 温湿度串口控制


void uart_sensor(){
	int tr=0;
	int tr_i = 0;
	tr = extract_two_digits((char *)uart4_data, "sensor  humidity_min = ", &tr_i);
	if(tr != 0){
		humidity_min = tr_i;
	}

	tr = extract_two_digits((char *)uart4_data, "sensor  temperature_max = ", &tr_i);
	if(tr != 0){
		temperature_max = tr_i;
	}


	if(strcmp("sensor temperature start",(char *)uart4_data)==0){
		en_t = 1;
	}
	if(strcmp("sensor humidity start",(char *)uart4_data)==0){
		en_r = 1;
	}
	if(strcmp("sensor temperature stop",(char *)uart4_data)==0){
		en_t = 0;
	}
	if(strcmp("sensor humidity stop",(char *)uart4_data)==0){
		en_r = 0;
	}


	if(strcmp("sensor list",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\r\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
		printf("sensor en_t : %d\r\n",en_t);
		printf("sensor en_r : %d\r\n",en_r);
		printf("sensor temperature_max : %d\r\n",temperature_max);
		printf("sensor humidity_min : %d\r\n",humidity_min);
	}

	if(strcmp("sensor Temp_Code RH_Code",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
	}


}

        4. 温湿度主函数


void sensor(){
	static int iii = 0;
	if(iii == 0){
		HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add1, 1, 100);
		HAL_Delay(2);
		iii++;
	}
	Temperature_humidity();
	uart_sensor();

	if(RH_Code < humidity_min && en_r == 1){
		//motor(10);
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_SET);
	}
	else{
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_RESET);
	}

	if(Temp_Code/100 >= temperature_max && en_t == 1){
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_RESET);
	}
}

(5)主函数


void end_main(){

	  tone_init(); //初始化音量频�??????
	  list_max = music_init();//更新乐谱
	  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);	//启动蜂鸣器定时器
	  HAL_TIM_Base_Start_IT(&htim2);		  	//启动定时�??????2
	  HAL_TIM_Base_Start_IT(&htim3);		  	//启动定时�??????2

	  //1 使能串口空闲中断
	  __HAL_UART_ENABLE_IT(&huart4,UART_IT_IDLE);
	  //2.使能串口中断接收数据
	  HAL_UART_Receive_IT(&huart4,rx_buf,sizeof(rx_buf));
	  int mode_n = 1;

	while(1){
		music_kz();

		alarm_clock();
		uart_mode();

		sensor();

		if(mode_n != mode){
			mode_n = mode;
			for(int i = 0; i<34;i++){
			//printf("afgsbgafdffag");
				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
				HAL_Delay(2);
			}
		}

	}
}

五、总代码

main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */


#include <string.h>


uint8_t rx_buf[200]={0};	//接收不定长数
uint8_t uart4_data[200] = {0};

extern int mode;	//模式
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;

TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;

UART_HandleTypeDef huart4;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM4_Init(void);
static void MX_UART4_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */



//重写标准输出函数
int __io_putchar(int ch)
{
	HAL_UART_Transmit(&huart4, (uint8_t *)&ch, 1, 10);
	return ch;
}


// 自定义空闲中断处理函�????????
void uart4_idle_func(void)
{
	int len = 0;
	//判定 是否为空闲中�????????
	if(  __HAL_UART_GET_FLAG(&huart4, UART_FLAG_IDLE) == SET )
	{
		// 清除空闲中断标志,因为是自己定义的函数 系统不会清标
		__HAL_UART_CLEAR_IDLEFLAG(&huart4);
		// 计算接收数据的长
		len = sizeof(rx_buf) - huart4.RxXferCount;
		//第二个参数是 还剩下的空间
		// 打印接收到时数据  数据处理
		//printf("uart rx len = %d, data: %s\r\n",len, rx_buf);

	    // 使用strcpy复制字符�????????
	    strcpy((char *)uart4_data, (char *)rx_buf);

	    printf("%s instructions success\r\n", uart4_data);
		// 准备接收下一次数�?????????
		memset(rx_buf,0,len); // 清理接收容器
		//重置接收指针 剩余容器大小
		huart4.pRxBuffPtr = rx_buf;
		huart4.RxXferCount = sizeof(rx_buf);
	}
}

//控制马达
void motor(int d){
	HAL_GPIO_TogglePin(GPIOF, GPIO_PIN_6);//
	HAL_Delay(d);
}


// 音乐
// 音乐盒基�??????变量
extern int time_100ms_cnt; //0.1s计数�??????
extern int Beat_speed;		//节拍速度,代表半个节拍需要多少个0.1s
extern int Beat_speed_n;	//实际执行的节拍数

extern int Beat_num;		//这个�??????个音�??????要多少个 半拍
extern int flag; 			//当其等于 1 时,表示�??????个音结束
extern int EN_music ;				//使能信号,用于开启整个音乐盒
extern int list ;			//音乐列表
extern int list_max ;		//音乐总数
extern int Low_volume ;		//音量大小
extern int Low_volume_cnt;
extern int music_speed_i; 	//音乐播放速度模式保存
extern int music_speed_kz(int i);

int tone[3][8];
//初始化高中低音频�??????
void tone_init(){
	tone[1][0] = 0;	//不执行音�??????
	tone[1][1] = 191;
	tone[1][2] = 170;
	tone[1][3] = 151;
	tone[1][4] = 143;
	tone[1][5] = 127;
	tone[1][6] = 113;
	tone[1][7] = 101;
    // 低音 (Low)
    for (int i = 0; i < 8; i++) {
        tone[0][i] = tone[1][i] * 2; // 只是低音 近似的�??
    }

    // 高音 (High)
    for (int i = 0; i < 8; i++) {
        tone[2][i] = tone[1][i] / 2; // 只是高音  近似的�??
    }
}

#define MAX_unit_num 200 //�????????大乐谱数�????????
//创建结构体保存乐�????????
struct music_unit{
	char name[50];		//乐谱名称
	int unit[MAX_unit_num];		//发什么音
	int unit_HL[MAX_unit_num];	//发高音或者其�????????
	int time[MAX_unit_num];		//发音时间
	//int time_4[MAX_unit_num];	//判断是否�????????1/4�????????
	int num;			//记录有多少个
}music[25];

//创建乐谱 返回有多少首音乐
int music_init(){
	int cnt = 0;
	//第一首音�???????? 生日快乐
	strcpy(music[0].name, "生日快乐"); 				// 使用strcpy复制字符�???????? 给音乐命�????????
	int music0_unit[29] = {0,0, 5,5,6,5,1,7, 5,5,6,5,2,1,
								5,5,6,3,1,7, 6,4,4,3,1,2,1,
								0,0};		//基础乐谱
	int music0_time[29] = {1,1, 1,1,2,2,2,3, 1,1,2,2,2,3,
								2,2,2,2,2,2, 2,2,2,2,2,2,3,
								1,1};		//乐谱节拍
	music[0].num = 29;										//乐谱总数
	int music0_unit_HL[29] = {1,1,
								0,0,0,0,1,0, 0,0,0,0,1,1,
								0,0,1,1,1,0, 0,1,1,1,1,1,1,
								1,1}; 	//乐谱全为中音

	//第二首音�???????? �????????闪一闪亮晶晶
	cnt++;
	strcpy(music[1].name, "�????????闪一闪亮晶晶"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
	int music1_unit[44] = {0,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   5,5,4,4,3,3,2, 5,5,4,4,3,3,2,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   0};		//基础乐谱
	int music1_time[44] = {2,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2};		//乐谱节拍
	int music1_unit_HL[44] =
						  {1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1}; 		//乐谱全为中音
	music[1].num = 44;											//乐谱总数



	//第三首音�???????? 两只老虎
	cnt++;
	strcpy(music[2].name, "两只老虎"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
	int music2_unit[38] = {0,
						   1,2,3,1, 1,2,3,1, 3,4,5,5, 3,4,5,5,
						   5,6,5,4, 3,1,5,6, 5,4,3,1, 1,5,1,1,
						   1,5,1,1, 0};		//基础乐谱
	int music2_time[38] = {2,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   0,0,0,0, 1,1,0,0, 0,0,1,1, 1,1,1,2,
						   1,1,1,2, 2};		//乐谱节拍
	int music2_unit_HL[38] =
						  {1,
					       1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
						   1,0,1,1, 1}; 		//乐谱�????????   中音
	music[2].num = 38;											//乐谱总数


	//第四首音�???????? 青花瓷片�????????
	cnt++;
	strcpy(music[3].name, "青花瓷片"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
	int music3_unit[100] = {0,0,0,0, 0,5,5,3, 2,3,6,2, 3,5,3,2, 2,5,5,3,
						    2,3,5,2, 3,5,2,1, 1,1,2,3, 5,6,5,4, 5,3,3,2,
						    2,2,1,2, 1,1,2,1, 2,3,5,3, 3,3,5,5, 3,2,3,6,
						    2,3,5,3, 2,2,5,5, 3,2,3,5, 2,3,5,2, 1,1,1,2,
						    3,5,6,5, 4,5,3,3, 2,2,5,3, 2,2,2,1, 1,0,0,0};		//基础乐谱

	int music3_time[100] = {0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2, 0,0,0,0,
							0,0,1,0, 0,0,0,2, 0,0,0,0, 0,0,0,0, 0,0,0,0,
							2,0,0,0, 0,0,0,0, 0,1,0,0, 2,0,0,0, 0,0,0,1,
							0,0,0,0, 2,0,0,0, 0,0,0,1, 0,0,0,0, 2,0,0,0,
							0,0,0,0, 0,0,0,0, 0,2,0,1, 0,0,0,1, 2,1,1,1};		//乐谱节拍

	for(int i =0;i<100;i++)
		music3_time[i] = music3_time[i]+1;

	int music3_unit_HL[100] =
						  { 1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1,
							1,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
							1,1,1,1, 1,1,1,1, 1,1,1,0, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1}; 		//乐谱�????????   中音
	music[3].num = 100;											//乐谱总数




	for (int i = 0; i < MAX_unit_num; i++) {
		//将乐谱保存进结构�????????
		if(i<music[0].num){//确保数据正确
			music[0].unit[i] =music0_unit[i];
			music[0].unit_HL[i] =music0_unit_HL[i];
			music[0].time[i] =music0_time[i];
		}


		//将乐谱保存进结构�????????
		if(i<music[1].num){//确保数据正确
			music[1].unit[i] =music1_unit[i];
			music[1].unit_HL[i] =music1_unit_HL[i];
			music[1].time[i] =music1_time[i];
		}

		//将乐谱保存进结构�????????
		if(i<music[2].num){//确保数据正确
			music[2].unit[i] =music2_unit[i];
			music[2].unit_HL[i] =music2_unit_HL[i];
			music[2].time[i] =music2_time[i];
		}


		//将乐谱保存进结构�????????
		if(i<music[3].num){//确保数据正确
			music[3].unit[i] =music3_unit[i];
			music[3].unit_HL[i] =music3_unit_HL[i];
			music[3].time[i] =music3_time[i];
		}
	}


	return cnt;
}

//播放�???? N首音�???? 音量�???? X 0 - 100
void play_music(int n, int x){
	static int ni = 0; 		//用于判断 是否换了音乐
	static int cnt = 0;		//记录播放到哪�????�???? 音节
	if(ni != n ){//如果音乐换了
		ni = n;
		cnt = 0;
		__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
		HAL_Delay(1000);//
	}

	//
	int value = tone[music[n].unit_HL[cnt]][music[n].unit[cnt]];	//获取频率
	if(flag == 1){	//接受到一个音节结�????
		flag = 0;	//复位
		Beat_num = music[n].time[cnt]; 				//这个音需要多少个半拍
		//LED_BEEP(music[n].unit[cnt]);				//LED随音节变动�?�变�????

		if(music[n].time[cnt] == 0){//如果�???? 1/4�????
			Beat_speed_n = Beat_speed /2;
		}
		else{//如果没有1/4�????
			Beat_speed_n = Beat_speed;
		}

		//if(value != 0)//如果有频率�?�执行,没有者只更新 时间�????
		__HAL_TIM_SET_AUTORELOAD(&htim4,value);		//自动加载频率�????

		cnt ++; 	//可进行下�????次音�????
		if(cnt >= music[n].num){ //如果�????个音节播放完�????
			cnt = 0;//重新播放
			//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
			//HAL_Delay(500);//
		}
	}
	//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,x * (value/100));//设置音量
	__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,(value/10)*x);//设置音量
}


//串口音乐控制函数
void music_kz(){
	  if(EN_music == 1)//启动
		  play_music(list,Low_volume);
	  else
		  __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量



	if(strcmp("music volume increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 10;
	}

	if(strcmp("music volume reduction",(char *)uart4_data)==0){
		Low_volume = Low_volume - Low_volume_cnt;
		if(Low_volume <= 0)
			Low_volume = 0;
	}


	if(strcmp("music speed increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
	}
	if(strcmp("music speed reduction",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i--;
		music_speed_i = music_speed_kz(music_speed_i);
	}

	if(strcmp("music next song",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		list++;
		if(list > list_max){
			list = list_max;
		}
	}
	if(strcmp("music previous song",(char *)uart4_data)==0){
		list--;
		uart4_data[0] = '0';
		if(list < 0){
			list = 0;
		}
	}

	if(strcmp("music start",(char *)uart4_data)==0){
		EN_music = 1;
	}
	if(strcmp("music stop",(char *)uart4_data)==0){
		EN_music = 0;
	}


}


//数码管闹�?????
extern int buf[8];
extern int shi_shi;
extern int shi_ge ;
extern int fen_shi;
extern int fen_ge ;
extern int miao_shi ;
extern int miao_ge ;

extern int miao ;
extern int shi ;
extern int fen;
//闹钟保存数组
extern int alarm_clock_array[20][4];
extern int alarm_clock_array_cnt;

//通过输入不同的n,返回shi fen miao
int clock_compute(int time_shi,int time_fen,int time_miao,int add_shi,int add_fen,int add_miao,int n){

	time_miao = time_miao + add_miao;
	time_fen = time_fen + time_miao/60;
	time_miao = time_miao % 60;

	time_fen = time_fen + add_fen;
	time_shi = time_shi + time_fen / 60;
	time_fen = time_fen%60;

	time_shi = time_shi + add_shi;
	time_shi = time_shi%24;

	if(n == 0) return time_shi;
	if(n == 1) return time_fen;
	if(n == 2) return time_miao;

	return -1;
}


//将字符解成数�?????
int char_number(uint8_t c){
    if(c >= '0' && c <= '9')
        return c-'0';
    else
        return -1;
}

// zfc 为当前传入字符串
// zfc_n为比较字符串
// num为如果两字符串最初相等,则取字符串后面多少位的数�?????
int number_char_come(uint8_t zfc[200], uint8_t zfc_n[200], int num){
	size_t len = strlen((char *)zfc_n);//无符号整数类�?????

	int cnt = 0;
	for(int i = 0;i < len;i++){
		if(zfc[i] != zfc_n[i]) return -1; //不相�?????
		else cnt++;
	}
	if(cnt != len)	 return -1;//两字符串不等

	size_t shen_len = strlen((char *)zfc) - len;//剩余字符串长�?????
	size_t hig_num = 0;//用以保存实际有效位数

	if(shen_len > num) hig_num = num;
	else hig_num = shen_len;
	//int number[200];



    int number1 = 0;
    int multiplier = 1; // 用于计算10的幂的变�?????
	for(int i = len + hig_num - 1; i >= len;i--){
		//number[i-len] = char_number(zfc[i]);
		if(char_number(zfc[i])== -1) {
			printf("\r\r\r number error\r\n");
			return -1;
		}

		multiplier = multiplier*10;
		number1 = number1 + char_number(zfc[i])*multiplier;
	}

	return number1;

}

// 函数定义:从字符串中提取两位数字
int extract_two_digits(const char *str, const char *prefix, int *value) {
    char *pos = strstr(str, prefix); // 查找前缀的位�?????
    if (pos == NULL) return 0; // 如果没找到前�?????,返�?????0表示失败

    // 跳过前缀的长度,找到数字�?????始的位置
    pos += strlen(prefix);

    // �?????查接下来的两个字符是否是数字
    if (pos[0] >= '0' && pos[0] <= '9' && pos[1] >= '0' && pos[1] <= '9') {
        // 转换字符为数�?????
        *value = (pos[0] - '0') * 10 + (pos[1] - '0');
        return 1; // 成功提取,返�?????1
    }

    return 0; // 提取失败,返�?????0
}



//判断是否到底闹钟
int en_clock = 0;//用于控制闹钟响铃
int en_clock_cnt = 0;
int clock_end[3] = {0};//记录闹钟无人时关闭的时间
//串口设置闹钟
void uart_clock(){
	int ci = 0;
	int ci_n = 0;

	//ci = number_char_come(uart4_data,(uint8_t *)"clock shi = ",2);

	ci = extract_two_digits((char *)uart4_data, (char *)"clock shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		shi = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock fen = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		fen = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock miao = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		miao = ci_n;
	}

	//设置�?????个多少时间后的闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay shi = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,ci_n,0,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,ci_n,0,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,ci_n,0,0,2);
		alarm_clock_array_cnt++;
	}
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay fen = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,ci_n,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,ci_n,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,ci_n,0,2);
		alarm_clock_array_cnt++;
	}

	ci = extract_two_digits((char *)uart4_data, "clock delay miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,0,ci_n,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,0,ci_n,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,0,ci_n,2);
		alarm_clock_array_cnt++;
	}

	// time shi = 12;fen = 10;miao = 12;music = 1;
	ci = 0;
	ci = ci + extract_two_digits((char *)uart4_data, "time shi = ", &alarm_clock_array[alarm_clock_array_cnt][0]);
	ci = ci + extract_two_digits((char *)uart4_data, ";fen = ", &alarm_clock_array[alarm_clock_array_cnt][1]);
	ci = ci + extract_two_digits((char *)uart4_data, ";miao = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	//ci = ci + extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	if(ci == 3){
		//完美对应
		uart4_data[0] = '1';
		ci = extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][3]);
		if(ci > list_max && ci<0) //如果大于音乐总数
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;//默认�?????3

		alarm_clock_array_cnt++;
	}


	if(strcmp("clock delay list",(char *)uart4_data)==0){

		uart4_data[0] = '0';
		for(int i = 0; i< alarm_clock_array_cnt;i++){
			if(alarm_clock_array[i][0] != -1 && alarm_clock_array[i][1] != -1 && alarm_clock_array[i][2] != -1)
			printf("%d : time -> %d/%d/%d  \r\n",i,	alarm_clock_array[i][0],
															alarm_clock_array[i][1],
															alarm_clock_array[i][2]
															);
		}
	}

	//读取关闭第几位闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock stop list = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock stop list = ", &ci_n);
	if(ci == 1){
		alarm_clock_array[ci_n][0] = -1;
		alarm_clock_array[ci_n][1] = -1;
		alarm_clock_array[ci_n][2] = -1;
	}

	//关闭闹钟
	if(strcmp("clock stop stop",(char *)uart4_data)==0){
		en_clock = 0;
	}


	if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
}
void smg_xians(){

}


void alarm_clock(){

	static int pos = 0;
	HAL_I2C_Mem_Write(&hi2c1,0x70,0X10+pos, 1, (uint8_t*)&buf[pos],1,100);
	HAL_Delay(1);
	pos++;
	if(pos == 3 && pos == 6) pos++;
	if(pos == 8) pos = 0;


	uart_clock();//调用串口控制

	for(int j=0;j<alarm_clock_array_cnt && en_clock == 0;j++){
		//int cnt_clock = 0;
		if(alarm_clock_array[j][0] == shi && alarm_clock_array[j][1] == fen && alarm_clock_array[j][2] == miao) {
			en_clock_cnt = j;
			en_clock = 1;
			clock_end[0] = clock_compute(shi,fen,miao,0,0,30,0);
			clock_end[1] = clock_compute(shi,fen,miao,0,0,30,1);
			clock_end[2] = clock_compute(shi,fen,miao,0,0,30,2);
			break;
		}
	}

	//当闹钟响�?????30S
	if(shi == clock_end[0] && fen == clock_end[1] && miao == clock_end[2]){
		en_clock = 0;//关闭闹钟
		//EN_music = 1;
	}

	if(en_clock == 1 ){
			motor(10);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		}
		else{
			HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
		}

}


uint8_t add1=0xFE,add2=0xE5,add3=0xE3;
//0xFE复位 0xE5启动湿度转换 0xE3启动温度转换
uint16_t RH_Code,RH_Code_low=0,RH_Code_high=0;
uint16_t Temp_Code,Temp_Code_low=0,Temp_Code_high=0;

int humidity_min = 50;//能仍受的�?????低干燥程�?????
int temperature_max = 50;//能仍受的�?????高温�?????
int en_t = 0; //温度使能
int en_r = 0; //湿度使能

//计算出温湿度
void Temperature_humidity(){
	//湿度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add2, 1,100);
			  //写命�??????? ox40里面写命�??????? 0xe5 启动湿度转换
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &RH_Code, 1, 100);
			  //读命�??????? �???????0x40读取出湿度的数据 存入变量RH_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  RH_Code_low=(RH_Code & 0xff);
			  RH_Code_high=(RH_Code >> 8)& 0xff;
			  RH_Code=(RH_Code_low << 8)+RH_Code_high;

			  //温度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add3, 1,100);
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &Temp_Code, 1, 100);
			  //读命�??????? �???????0x40读取出温度的数据 存入变量Temp_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  Temp_Code_low=(Temp_Code & 0xff);
			  Temp_Code_high=(Temp_Code >> 8)& 0xff;
			  Temp_Code=(Temp_Code_low << 8)+Temp_Code_high;

			  Temp_Code=17572*Temp_Code/65535-4685;//扩大�???????百�??
			  RH_Code=125*RH_Code/65536-6;//计算出湿度�??
			  //printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
			  //串口输出温湿�???????
			  HAL_Delay(2);
}



void uart_sensor(){
	int tr=0;
	int tr_i = 0;
	tr = extract_two_digits((char *)uart4_data, "sensor  humidity_min = ", &tr_i);
	if(tr != 0){
		humidity_min = tr_i;
	}

	tr = extract_two_digits((char *)uart4_data, "sensor  temperature_max = ", &tr_i);
	if(tr != 0){
		temperature_max = tr_i;
	}


	if(strcmp("sensor temperature start",(char *)uart4_data)==0){
		en_t = 1;
	}
	if(strcmp("sensor humidity start",(char *)uart4_data)==0){
		en_r = 1;
	}
	if(strcmp("sensor temperature stop",(char *)uart4_data)==0){
		en_t = 0;
	}
	if(strcmp("sensor humidity stop",(char *)uart4_data)==0){
		en_r = 0;
	}


	if(strcmp("sensor list",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\r\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
		printf("sensor en_t : %d\r\n",en_t);
		printf("sensor en_r : %d\r\n",en_r);
		printf("sensor temperature_max : %d\r\n",temperature_max);
		printf("sensor humidity_min : %d\r\n",humidity_min);
	}

	if(strcmp("sensor Temp_Code RH_Code",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
	}


}


void sensor(){
	static int iii = 0;
	if(iii == 0){
		HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add1, 1, 100);
		HAL_Delay(2);
		iii++;
	}
	Temperature_humidity();
	uart_sensor();

	if(RH_Code < humidity_min && en_r == 1){
		//motor(10);
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_SET);
	}
	else{
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_RESET);
	}

	if(Temp_Code/100 >= temperature_max && en_t == 1){
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_RESET);
	}
}


uint8_t DZP_data[6][34]={
		{0xAA,0x55,
		0xFD,0xFF,0xFE,0xFF,0xC0,0x07,0xFF,0xFF,0xF7,0xDF,0xFB,0xBF,0x00,0x01,0xFF,0xFF,
		0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF},//�?//0//

		{0xAA,0x55,
		0xEF,0xDF,0xEF,0xDF,0xC3,0xDF,0xDF,0xDF,0xBE,0x03,0x42,0xDB,0xEE,0xDB,0xEE,0xDB,
		0x02,0xDB,0xEE,0x03,0xEE,0xDB,0xEF,0xDF,0xEB,0xDF,0xE7,0xDF,0xEF,0xDF,0xFF,0xDF},//�?//1//

		{0xAA,0x55,
		0xF7,0xBF,0xF7,0xBF,0xF7,0xBF,0xEC,0x07,0xEF,0xBF,0xCF,0x7F,0xC8,0x01,0xAF,0x7F,
		0x6E,0xFF,0xEC,0x07,0xEF,0xF7,0xEE,0xEF,0xEF,0x5F,0xEF,0xBF,0xEF,0xDF,0xEF,0xDF}//�?//2//

};

void uart_mode(){

	if(strcmp("mode = music",(char *)uart4_data)==0){
		mode = 0;
	}
	if(strcmp("mode = clock",(char *)uart4_data)==0){
		mode = 1;
	}
	if(strcmp("mode = sensor",(char *)uart4_data)==0){
		mode = 2;
	}
}
void end_main(){

	  tone_init(); //初始化音量频�??????
	  list_max = music_init();//更新乐谱
	  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);	//启动蜂鸣器定时器
	  HAL_TIM_Base_Start_IT(&htim2);		  	//启动定时�??????2
	  HAL_TIM_Base_Start_IT(&htim3);		  	//启动定时�??????2

	  //1 使能串口空闲中断
	  __HAL_UART_ENABLE_IT(&huart4,UART_IT_IDLE);
	  //2.使能串口中断接收数据
	  HAL_UART_Receive_IT(&huart4,rx_buf,sizeof(rx_buf));
	  int mode_n = 1;

	while(1){
		music_kz();

		alarm_clock();
		uart_mode();

		sensor();

		if(mode_n != mode){
			mode_n = mode;
			for(int i = 0; i<34;i++){
			//printf("afgsbgafdffag");
				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
				HAL_Delay(2);
			}
		}

	}
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  if(IS_ENGINEERING_BOOT_MODE())
  {
    /* Configure the system clock */
    SystemClock_Config();
  }

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C1_Init();
  MX_TIM2_Init();
  MX_TIM4_Init();
  MX_UART4_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */

  end_main();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

	  //printf("afsgbhdn\t\n");
	  //HAL_Delay(500);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.HSIDivValue = RCC_HSI_DIV1;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** RCC Clock Config
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_ACLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_PCLK3|RCC_CLOCKTYPE_PCLK4
                              |RCC_CLOCKTYPE_PCLK5;
  RCC_ClkInitStruct.AXISSInit.AXI_Clock = RCC_AXISSOURCE_HSI;
  RCC_ClkInitStruct.AXISSInit.AXI_Div = RCC_AXI_DIV1;
  RCC_ClkInitStruct.MCUInit.MCU_Clock = RCC_MCUSSOURCE_HSI;
  RCC_ClkInitStruct.MCUInit.MCU_Div = RCC_MCU_DIV1;
  RCC_ClkInitStruct.APB4_Div = RCC_APB4_DIV1;
  RCC_ClkInitStruct.APB5_Div = RCC_APB5_DIV1;
  RCC_ClkInitStruct.APB1_Div = RCC_APB1_DIV1;
  RCC_ClkInitStruct.APB2_Div = RCC_APB2_DIV1;
  RCC_ClkInitStruct.APB3_Div = RCC_APB3_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.Timing = 0x10707DBC;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analogue filter
  */
  if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Digital filter
  */
  if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 6400-1;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 1000-1;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 6399;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 10000-1;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */

}

/**
  * @brief TIM4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM4_Init(void)
{

  /* USER CODE BEGIN TIM4_Init 0 */

  /* USER CODE END TIM4_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM4_Init 1 */

  /* USER CODE END TIM4_Init 1 */
  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 639;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 100-1;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM4_Init 2 */

  /* USER CODE END TIM4_Init 2 */
  HAL_TIM_MspPostInit(&htim4);

}

/**
  * @brief UART4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_UART4_Init(void)
{

  /* USER CODE BEGIN UART4_Init 0 */

  /* USER CODE END UART4_Init 0 */

  /* USER CODE BEGIN UART4_Init 1 */

  /* USER CODE END UART4_Init 1 */
  huart4.Instance = UART4;
  huart4.Init.BaudRate = 115200;
  huart4.Init.WordLength = UART_WORDLENGTH_8B;
  huart4.Init.StopBits = UART_STOPBITS_1;
  huart4.Init.Parity = UART_PARITY_NONE;
  huart4.Init.Mode = UART_MODE_TX_RX;
  huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart4) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN UART4_Init 2 */

  /* USER CODE END UART4_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOI_CLK_ENABLE();
  __HAL_RCC_GPIOG_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOE_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1|GPIO_PIN_6, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);

  /*Configure GPIO pins : PF1 PF6 */
  GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_6;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);

  /*Configure GPIO pin : PC7 */
  GPIO_InitStruct.Pin = GPIO_PIN_7;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pins : PI11 PI10 */
  GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_10;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);

  /*Configure GPIO pins : PG2 PG0 PG1 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_0|GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);

  /*Configure GPIO pin : PE9 */
  GPIO_InitStruct.Pin = GPIO_PIN_9;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI0_IRQn, 3, 0);
  HAL_NVIC_EnableIRQ(EXTI0_IRQn);

  HAL_NVIC_SetPriority(EXTI1_IRQn, 3, 0);
  HAL_NVIC_EnableIRQ(EXTI1_IRQn);

  HAL_NVIC_SetPriority(EXTI2_IRQn, 3, 0);
  HAL_NVIC_EnableIRQ(EXTI2_IRQn);

  HAL_NVIC_SetPriority(EXTI9_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(EXTI9_IRQn);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

stm32mp1xx_it.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    stm32mp1xx_it.c
  * @brief   Interrupt Service Routines.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32mp1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
int mode = 0;	//模式
extern void uart4_idle_func(void);
extern void smg_xians();
// 音乐盒基�?????变量
int time_100ms_cnt = 0; //0.1s计数�?????
int Beat_speed = 5;		//节拍速度,代表半个节拍需要多少个0.1s
int Beat_speed_n = 0;	//实际执行的节拍数

int Beat_num = 2;		//这个�?????个音�?????要多少个 半拍
int flag = 0; 			//当其等于 1 时,表示�?????个音结束
int EN_music = 0;				//使能信号,用于开启整个音乐盒
int list = 0;			//音乐列表
int list_max = 0;		//音乐总数
int Low_volume = 5;		//音量大小
int Low_volume_cnt = 3;	//音量大小增加�?????
int music_speed_i = 0; 	//音乐播放速度模式保存
// 音乐播放速度控制函数
int music_speed_kz(int i){
	//倍数计算公式 1 + (1 - (新的节拍速度 / 原来的节拍�?�度))
				switch(i){
				case 0:{
					Beat_speed = 5;	//0.5s半个节拍,正�?????+�??????�度
					break;
				}
				case 1:{
					Beat_speed = 4;	//1.2倍数
					break;
				}
				case 2:{
					Beat_speed = 3;	//约等�??????? 1.5倍数
					break;
				}
				case 3:{
					Beat_speed = 1;	//约等�??????? 2 倍数
					break;
				}
				case 4:{
					Beat_speed = 6;	//约等�??????? 0.8 倍数
					break;
				}
				case 5:{
					Beat_speed = 7;	//约等�??????? 0.6 倍数
					break;
				}
				default:{
					Beat_speed = 5;	//0.5s半个节拍,正常�?�度
					i=0;
					break;
				}
				}
	return i;
}

//数码管闹�????
int smg_number[10] = {0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xE0,0xFE,0xF6};
int buf[8] = {0};

//闹钟保存数组
int alarm_clock_array[20][4] = {0};
int alarm_clock_array_cnt = 0;
//实时时钟信息
int shi_shi = 0;
int shi_ge = 0;
int fen_shi = 0;
int fen_ge = 0;
int miao_shi = 0;
int miao_ge = 0;
int miao = 0;
int shi = 0;
int fen = 0;

int EN_clock = 0;//闹钟设置使能
extern int en_clock;//用于控制闹钟响铃

//闹钟设置信息
int shi_shi_clock = 0;
int shi_ge_clock = 0;
int fen_shi_clock = 0;
int fen_ge_clock = 0;
int miao_shi_clock = 0;
int miao_ge_clock = 0;
int miao_clock = 0, shi_clock = 0, fen_clock = 0;

/* USER CODE END TD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/* External variables --------------------------------------------------------*/
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim3;
extern UART_HandleTypeDef huart4;
/* USER CODE BEGIN EV */

/* USER CODE END EV */

/******************************************************************************/
/*           Cortex-M4 Processor Interruption and Exception Handlers          */
/******************************************************************************/
/**
  * @brief This function handles Non maskable interrupt.
  */
void NMI_Handler(void)
{
  /* USER CODE BEGIN NonMaskableInt_IRQn 0 */

  /* USER CODE END NonMaskableInt_IRQn 0 */
  /* USER CODE BEGIN NonMaskableInt_IRQn 1 */
  while (1)
  {
  }
  /* USER CODE END NonMaskableInt_IRQn 1 */
}

/**
  * @brief This function handles Hard fault interrupt.
  */
void HardFault_Handler(void)
{
  /* USER CODE BEGIN HardFault_IRQn 0 */

  /* USER CODE END HardFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_HardFault_IRQn 0 */
    /* USER CODE END W1_HardFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Memory management fault.
  */
void MemManage_Handler(void)
{
  /* USER CODE BEGIN MemoryManagement_IRQn 0 */

  /* USER CODE END MemoryManagement_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
    /* USER CODE END W1_MemoryManagement_IRQn 0 */
  }
}

/**
  * @brief This function handles Pre-fetch fault, memory access fault.
  */
void BusFault_Handler(void)
{
  /* USER CODE BEGIN BusFault_IRQn 0 */

  /* USER CODE END BusFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_BusFault_IRQn 0 */
    /* USER CODE END W1_BusFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Undefined instruction or illegal state.
  */
void UsageFault_Handler(void)
{
  /* USER CODE BEGIN UsageFault_IRQn 0 */

  /* USER CODE END UsageFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
    /* USER CODE END W1_UsageFault_IRQn 0 */
  }
}

/**
  * @brief This function handles System service call via SWI instruction.
  */
void SVC_Handler(void)
{
  /* USER CODE BEGIN SVCall_IRQn 0 */

  /* USER CODE END SVCall_IRQn 0 */
  /* USER CODE BEGIN SVCall_IRQn 1 */

  /* USER CODE END SVCall_IRQn 1 */
}

/**
  * @brief This function handles Debug monitor.
  */
void DebugMon_Handler(void)
{
  /* USER CODE BEGIN DebugMonitor_IRQn 0 */

  /* USER CODE END DebugMonitor_IRQn 0 */
  /* USER CODE BEGIN DebugMonitor_IRQn 1 */

  /* USER CODE END DebugMonitor_IRQn 1 */
}

/**
  * @brief This function handles Pendable request for system service.
  */
void PendSV_Handler(void)
{
  /* USER CODE BEGIN PendSV_IRQn 0 */

  /* USER CODE END PendSV_IRQn 0 */
  /* USER CODE BEGIN PendSV_IRQn 1 */

  /* USER CODE END PendSV_IRQn 1 */
}

/**
  * @brief This function handles System tick timer.
  */
void SysTick_Handler(void)
{
  /* USER CODE BEGIN SysTick_IRQn 0 */

  /* USER CODE END SysTick_IRQn 0 */
  HAL_IncTick();
  /* USER CODE BEGIN SysTick_IRQn 1 */

  /* USER CODE END SysTick_IRQn 1 */
}

/******************************************************************************/
/* STM32MP1xx Peripheral Interrupt Handlers                                    */
/* Add here the Interrupt Handlers for the used peripherals.                  */
/* For the available peripheral interrupt handler names,                      */
/* please refer to the startup file (startup_stm32mp1xx.s).                    */
/******************************************************************************/

/**
  * @brief This function handles EXTI line0 interrupt.
  */
void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */

	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
	{

		//每次按下解决 音量�??????? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {

		shi_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		if(shi_clock>=24)
		{
			shi_clock=0;
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

/**
  * @brief This function handles EXTI line1 interrupt.
  */
void EXTI1_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI1_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0 && mode == 0)//确保数据稳定
		{
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_1)==GPIO_PIN_RESET && mode == 1) {
		fen_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		if(fen_clock>=60)
		{
			fen_clock=0;
			shi_clock++;
			fen_shi_clock=fen_clock/10;
			fen_ge_clock=fen_clock%10;
			shi_shi_clock=shi_clock/10;
			shi_ge_clock=shi_clock%10;
			if(shi_clock>=24)
			{
				shi_clock=0;
			}
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI1_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
  /* USER CODE BEGIN EXTI1_IRQn 1 */

  /* USER CODE END EXTI1_IRQn 1 */
}

/**
  * @brief This function handles EXTI line2 interrupt.
  */
void EXTI2_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI2_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0 && mode == 0)//确保数据稳定
		{
			list++;
			if(list > list_max){
				list = 0;
			}
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_2)==GPIO_PIN_RESET && mode == 1) {
			//在此处关闭闹�????
			en_clock = 0;
		}
  /* USER CODE END EXTI2_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
  /* USER CODE BEGIN EXTI2_IRQn 1 */

  /* USER CODE END EXTI2_IRQn 1 */
}

/**
  * @brief This function handles TIM2 global interrupt.
  */
void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */
	if(EN_music == 1)
		time_100ms_cnt++;
	else
		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数

	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
		time_100ms_cnt = 0;
		flag = 1;	//发�?�音节结束信�???????
	}


	//数码�????
	static int smg_time_100ms = 0;
	smg_time_100ms++;
	if(smg_time_100ms>=10){
		miao++;
		smg_time_100ms = 0;
	}


	if (miao>=60)
	{
		miao=0;
		fen++;
		if(fen>=60)
		{
			fen=0;
			shi++;
			if(shi>=24)
			{
				shi=0;
			}
		}
	}


	if(miao >= 60){
		miao = miao-60;
		fen++;
	}
	if(fen>=60){
		fen = fen-60;
		shi ++;
	}
	if(shi>= 24){
		shi = shi -24;

	}


	miao_shi=miao/10;
	miao_ge=miao%10;

	fen_shi=fen/10;
	fen_ge=fen%10;

	shi_shi=shi/10;
	shi_ge=shi%10;


	if(EN_clock == 0){
	buf[0]=smg_number[shi_shi];
	buf[1]=smg_number[shi_ge];
	buf[3]=smg_number[fen_shi];
	buf[4]=smg_number[fen_ge];
	buf[6]=smg_number[miao_shi];
	buf[7]=smg_number[miao_ge];
	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_SET);
	}

  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

/**
  * @brief This function handles TIM3 global interrupt.
  */
void TIM3_IRQHandler(void)
{
  /* USER CODE BEGIN TIM3_IRQn 0 */
	smg_xians();
  /* USER CODE END TIM3_IRQn 0 */
  HAL_TIM_IRQHandler(&htim3);
  /* USER CODE BEGIN TIM3_IRQn 1 */

  /* USER CODE END TIM3_IRQn 1 */
}

/**
  * @brief This function handles UART4 global interrupt.
  */
void UART4_IRQHandler(void)
{
  /* USER CODE BEGIN UART4_IRQn 0 */
	uart4_idle_func();

  /* USER CODE END UART4_IRQn 0 */
  HAL_UART_IRQHandler(&huart4);
  /* USER CODE BEGIN UART4_IRQn 1 */

  /* USER CODE END UART4_IRQn 1 */
}

/**
  * @brief This function handles EXTI line9 interrupt.
  */
void EXTI9_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI9_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 0){//确保数据稳定
		EN_music = !EN_music;
	}

	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 1 ){//确保数据稳定
		if(EN_clock == 1){
			//闹钟设置成功
			alarm_clock_array[alarm_clock_array_cnt][0] = shi_clock;
			alarm_clock_array[alarm_clock_array_cnt][1] = fen_clock;
			alarm_clock_array[alarm_clock_array_cnt][2] = miao_clock;
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;	//默认播放第三首音�????
			alarm_clock_array_cnt++;
			if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
			EN_clock = 0;
		}
		else if(EN_clock == 0){
			//设置闹钟
			shi_shi_clock = shi_shi;
			shi_ge_clock = shi_ge;
			fen_shi_clock = fen_shi;
			fen_ge_clock = fen_ge;
			miao_shi_clock = 0;
			miao_ge_clock = 0;
			miao_clock = 0;
			shi_clock = shi;
			fen_clock = fen;
			EN_clock = 1;
		}
	}






  /* USER CODE END EXTI9_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
  /* USER CODE BEGIN EXTI9_IRQn 1 */

  /* USER CODE END EXTI9_IRQn 1 */
}

/**
  * @brief This function handles RCC wake-up interrupt.
  */
void RCC_WAKEUP_IRQHandler(void)
{
  /* USER CODE BEGIN RCC_WAKEUP_IRQn 0 */

  /* USER CODE END RCC_WAKEUP_IRQn 0 */
  HAL_RCC_WAKEUP_IRQHandler();
  /* USER CODE BEGIN RCC_WAKEUP_IRQn 1 */

  /* USER CODE END RCC_WAKEUP_IRQn 1 */
}

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

        串口指令集

mode = music
mode = clock
mode = sensor

music volume increase
music volume reduction
music speed increase
music speed reduction
music next song
music previous song
music start
music stop

clock shi = 
clock fen = 
clock miao = 
clock delay shi = 
clock delay fen = 
clock delay miao = 

time shi = ;fen = ;miao = 
clock delay list
clock stop list = 
clock stop stop

sensor  humidity_min = 
sensor  temperature_max = 
sensor temperature start
sensor humidity start
sensor temperature stop
sensor humidity stop
sensor list
sensor Temp_Code RH_Code

六、部分效果展示

STM32杂交版

七、总结

        本设计是一个高度集成的基于STM32MP157A单片机的多功能系统,通过整合蜂鸣器、数码管、点阵屏、温湿度传感器、LED灯、按键等多种模块,实现了丰富的交互与功能。系统利用STM32CUBEIDE作为开发平台,充分发挥了STM32MP157A单片机的高性能与灵活性,展现了其在嵌入式系统设计中的广泛应用潜力。

设计总结:

  1. 模块化设计:本设计采用了模块化设计思路,将不同功能模块(如闹钟、音乐盒、温湿度监测)独立设计后整合在一起,不仅提高了系统的可维护性和可扩展性,还使得各个模块的功能实现更加清晰明了。

  2. 灵活的模式切换:通过串口通信实现不同模式(闹钟、音乐盒、温湿度监测)之间的灵活切换,使得用户可以根据需要轻松选择所需功能,提高了系统的用户友好性和实用性。

  3. 多样化的显示与交互:点阵屏在不同模式下显示不同的汉字(如“钟”、“音”、“传”),直观展示了当前的工作模式,增强了用户体验。同时,按键和串口控制相结合的方式,使得用户可以通过多种途径对系统进行操作,如调节音乐播放速度、音量、切换歌曲,调整闹钟时间、设置多个闹钟等,极大地丰富了系统的交互方式。

  4. 温湿度监测与调节:系统集成了温湿度传感器,能够实时监测环境温湿度,并通过串口调节温湿度上下限,当温湿度超出设定范围时,通过LED灯进行边界提示,实现了对环境的智能监测与调节。

  5. 高效的开发平台:采用STM32CUBEIDE作为开发平台,利用其强大的代码编辑、编译、调试功能,以及丰富的库函数和示例项目,极大地提高了开发效率,降低了开发难度。

  6. 综合应用能力的展现:本设计不仅展示了STM32MP157A单片机在嵌入式系统设计中的强大功能,还体现了设计者在硬件选型、电路设计、软件编程、系统调试等方面的综合应用能力。

综上所述,本设计是一个集多功能性、灵活性、用户友好性于一体的嵌入式系统,充分展示了STM32MP157A单片机在复杂系统设计中的广泛应用前景和潜力。通过本设计的实施,不仅加深了对嵌入式系统设计的理解,还提升了解决实际问题的能力。

参考资料:

        1. STM32简易音乐播放器(HAL库)

相关推荐

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-12 00:14:04       70 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-12 00:14:04       74 阅读
  3. 在Django里面运行非项目文件

    2024-07-12 00:14:04       62 阅读
  4. Python语言-面向对象

    2024-07-12 00:14:04       72 阅读

热门阅读

  1. C++ --> 类和对象(一)

    2024-07-12 00:14:04       22 阅读
  2. 系统架构的基础:定义、原则与发展历程

    2024-07-12 00:14:04       23 阅读
  3. 如何调整Oracle SGA的大小

    2024-07-12 00:14:04       24 阅读
  4. 贪心算法-以高校科研管理系统为例

    2024-07-12 00:14:04       26 阅读
  5. ActivityThread与AMS之间关系是什么?

    2024-07-12 00:14:04       21 阅读
  6. 【学习笔记】Redis学习笔记——第7章 压缩列表

    2024-07-12 00:14:04       24 阅读
  7. Mysql中常用函数的使用示例

    2024-07-12 00:14:04       21 阅读
  8. IP地址笔记

    2024-07-12 00:14:04       19 阅读