【数学】常用等价无穷小及其注意事项示例

常用极限

lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \to 0} {\frac{\sin x}{x}}=1 limx0xsinx=1 lim ⁡ x → 0 ( x + 1 ) 1 x = e \lim_{x \to 0} {(x+1)^\frac{1}{x}}=e limx0(x+1)x1=e lim ⁡ n → ∞ a n = 1 \lim_{n \to \infty} {\sqrt[n]{a}}=1 limnna =1
lim ⁡ n → ∞ n n = 1 \lim_{n \to \infty} {\sqrt[n]{n}}=1 limnnn =1 lim ⁡ x → + ∞ arctan ⁡ x = π 2 \lim_{x \to +\infty} {\arctan x}=\frac{\pi}{2} limx+arctanx=2π lim ⁡ x → − ∞ arctan ⁡ x = − π 2 \lim_{x \to -\infty} {\arctan x}=-\frac{\pi}{2} limxarctanx=2π
lim ⁡ x → + ∞ arccot x = 0 \lim_{x \to +\infty} {\text{arccot} x}=0 limx+arccotx=0 lim ⁡ x → − ∞ arccot x = π \lim_{x \to -\infty} {\text{arccot} x}=\pi limxarccotx=π lim ⁡ x → − ∞ e x = 0 \lim_{x \to -\infty} {e^x}=0 limxex=0
lim ⁡ x → + ∞ e x = ∞ \lim_{x \to +\infty} {e^x}=\infty limx+ex= lim ⁡ x → 0 + x x = 1 \lim_{x \to 0^+} {x^x}=1 limx0+xx=1 lim ⁡ x → ∞ ( 1 x + 1 ) x = e \lim_{x \to \infty} {(\frac{1}{x}+1)^x}=e limx(x1+1)x=e

常用等价无穷小 x → 0 x\to 0 x0,替换条件:只能分子及分母中因式分解可替换

sin ⁡ x ∼ x \sin x \sim x sinxx tan ⁡ x ∼ x \tan x \sim x tanxx arcsin ⁡ x ∼ x \arcsin x \sim x arcsinxx
arctan ⁡ x ∼ x \arctan x \sim x arctanxx 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos x \sim \frac{1}{2}x^2 1cosx21x2 ln ⁡ ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)x
e x − 1 ∼ x e^x-1 \sim x ex1x a x − 1 ∼ x ln ⁡ a a^x-1 \sim x\ln a ax1xlna ( 1 + x ) α ∼ α x (1+x)^\alpha \sim \alpha x (1+x)ααx
sin ⁡ x − x ∼ − 1 6 x 3 \sin x -x \sim -\frac{1}{6}x^3 sinxx61x3

等价无穷小替换注意:

1、被替换的量必须是无穷小量(取极限为0)

例: lim ⁡ x → 0 x 2 ∗ sin ⁡ 1 x 2 \lim_{x \to 0} x^2*\sin \frac{1}{x^2} limx0x2sinx21

∵ lim ⁡ x → 0 x 2 = 0 , lim ⁡ x → 0 sin ⁡ 1 x 2 极限不存在且为有界函数 \because \quad \lim_{x \to 0} x^2=0, \lim_{x \to 0} \sin \frac{1}{x^2} 极限不存在且为有界函数 limx0x2=0limx0sinx21极限不存在且为有界函数

∴ 无穷小与有界的集为无穷小, lim ⁡ x → 0 x 2 ∗ sin ⁡ 1 x 2 = 0 \therefore \quad 无穷小与有界的集为无穷小,\lim_{x \to 0} x^2*\sin \frac{1}{x^2}=0 无穷小与有界的集为无穷小,limx0x2sinx21=0

2、被替换的量,必须是被乘式被除的元素

例: lim ⁡ x → 0 sin ⁡ x − tan ⁡ x x 3 \lim_{x \to 0} \frac{\sin x - \tan x}{x^3} limx0x3sinxtanx

∵ lim ⁡ x → 0 sin ⁡ x − tan ⁡ x x 3 = lim ⁡ x → 0 tan ⁡ x ( cos ⁡ x − 1 ) x 3 , lim ⁡ x → 0 tan ⁡ x x = 1 , 1 − cos ⁡ x ∼ 1 2 x 2 \because \lim_{x \to 0} \frac{\sin x - \tan x}{x^3} = \lim_{x \to 0} \frac{\tan x(\cos x - 1)}{x^3},\lim_{x \to 0} {\frac{\tan x}{x}}=1,1-\cos x \sim \frac{1}{2}x^2 limx0x3sinxtanx=limx0x3tanx(cosx1)limx0xtanx=1,1cosx21x2

∴ lim ⁡ x → 0 sin ⁡ x − tan ⁡ x x 3 = − 1 ∗ 1 2 x 2 x 2 = − 1 2 \therefore \quad \lim_{x \to 0} \frac{\sin x - \tan x}{x^3} =-1* \frac{\frac{1}{2}x^2}{x^2}=-\frac{1}{2} limx0x3sinxtanx=1x221x2=21

3、必须整体替换:不能替换局部

例: lim ⁡ x → 0 sin ⁡ x ( x + 1 ) x \lim_{x \to 0} \frac{\sin x(x+1)}{x} limx0xsinx(x+1)

∵ lim ⁡ x → 0 sin ⁡ x ( x + 1 ) x = lim ⁡ x → 0 1 ∗ ( 1 + x ) = 0 \because \quad \lim_{x \to 0} \frac{\sin x(x+1)}{x}= \lim_{x \to 0} 1*(1+x)=0 limx0xsinx(x+1)=limx01(1+x)=0

例: lim ⁡ x → 0 ( e x + x e x e x − 1 − 1 x ) \lim_{x \to 0} (\frac{e^x+xe^x}{e^x-1} - \frac{1}{x}) limx0(ex1ex+xexx1)

∵ lim ⁡ x → 0 ( e x + x e x e x − 1 − 1 x ) = lim ⁡ x → 0 ( e x ( 1 + x ) e x − 1 − 1 x ) ∗ lim ⁡ x → 0 e x − 1 x = lim ⁡ x → 0 e x ( x 2 + x − 1 ) + 1 x 2 \because \quad \lim_{x \to 0} (\frac{e^x+xe^x}{e^x-1} - \frac{1}{x})=\lim_{x \to 0}(\frac{e^x(1+x)}{e^x-1} - \frac{1}{x})* \lim_{x \to 0} \frac{e^x-1}{x}=\lim_{x \to 0}\frac{e^x(x^2+x-1)+1}{x^2} limx0(ex1ex+xexx1)=limx0(ex1ex(1+x)x1)limx0xex1=limx0x2ex(x2+x1)+1

∴ 上述是 0 0 , 对 lim ⁡ x → 0 e x ( x 2 + x − 1 ) + 1 x 2 上下同时求导得 \therefore \quad 上述是\frac{0}{0},对\lim_{x \to 0} \frac{e^x(x^2+x-1)+1}{x^2}上下同时求导得 上述是00,limx0x2ex(x2+x1)+1上下同时求导得

lim ⁡ x → 0 e x ( x 2 + x − 1 ) + 1 x 2 = lim ⁡ x → 0 e x ( x 2 + 3 x ) 2 x = 3 2 \quad \quad \lim_{x \to 0} \frac{e^x(x^2+x-1)+1}{x^2}=\lim_{x \to 0} \frac{e^x(x^2+3x)}{2x}=\frac{3}{2} limx0x2ex(x2+x1)+1=limx02xex(x2+3x)=23

相关推荐

  1. 数学等价无穷小及其注意事项示例

    2024-04-21 20:18:01       41 阅读
  2. Spring MVC中的注解及其

    2024-04-21 20:18:01       41 阅读
  3. SpringBoot20个注解及其作用

    2024-04-21 20:18:01       29 阅读
  4. 数组 注意事项

    2024-04-21 20:18:01       49 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-04-21 20:18:01       94 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-04-21 20:18:01       101 阅读
  3. 在Django里面运行非项目文件

    2024-04-21 20:18:01       82 阅读
  4. Python语言-面向对象

    2024-04-21 20:18:01       91 阅读

热门阅读

  1. CentOS常见的命令

    2024-04-21 20:18:01       40 阅读
  2. 常用渗透测试checklist

    2024-04-21 20:18:01       31 阅读
  3. 关于DDD设计模式的各种疑问:什么是DDD架构?

    2024-04-21 20:18:01       30 阅读
  4. iOS Delegate receiver 如何返回值给 sender

    2024-04-21 20:18:01       33 阅读
  5. UML绘制

    2024-04-21 20:18:01       33 阅读
  6. 怎么直连某个服务器的dubbo服务

    2024-04-21 20:18:01       34 阅读