Redis的简介,常用命令、安装以及优化

目录

一、关系型数据库与非关系型数据库

1、关系型数据库

1.1优点:

1.2缺点:

2、非关系型数据库

二、关系型数据库与非关系型数据库的区别

1、数据存储方式不同

2、扩展方式不同

3、对事务性的支持不同

三、非关系型数据库产生的背景

四、Redis简介

1、Redis的单线程模式

2、Redis优点

3、Redis的缺点

五、Redis的安装部署

六、Redis命令工具

1、redis-cli命令行工具

2、redis-benchmark测试工具

3、redis数据库常用命令

4、Redis多数据库查用命令

七、Redis的高可用

①持久化:

②主从复制:

③哨兵:

④集群:

八、Redis持久化

1、持久化的功能:

2、Redis提供的两种方式进行持久化

①RDB持久化:

②AOF持久化:

3、RDB持久化

3.1触发条件

①手动触发:

②自动触发

3.2执行流程

3.3启动时加载

3、AOF持久化

3.1开启AOF

3.2执行流程

3.2.1命令追加:

3.2.2文件写入(write)和文件同步(sync)

3.2.2.1 AOF缓存区的同步文件策略存在三种同步方式,分别是

3.2.3文件重写

3.3、启动时加载

4、RDB和AOF的优缺点

4.1RDB持久化

①优点:

②缺点:

4.2AOF持久化

九、Redis性能管理

1、内存碎片率

2、内存使用率

3、内回收key


一、关系型数据库与非关系型数据库

1、关系型数据库

关系型数据库是一个结构化的数据库,创建在关系模型基础上,一般面向于记录。SQL语句就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。主流的关系型数据库包括oracle、mysql、sql server、microsoft access、db2等。

1.1优点:

①易于维护:都是使用表结构,格式一致

②使用方便:SQL语言通用,可用于复杂查询

③支持复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询

1.2缺点:

①读写性能比较差,尤其是海量数据的高效率读写

②固定的表结构,灵活度稍欠

③对于高并发读写的需求,传统型数据库节点的硬盘I/O是一个很大的瓶颈

2、非关系型数据库

Nosql (not only sql)就是不仅仅是SQL,是非关系型数据库的总称。

除了主流的关系型数据库外的数据库,都认为是非关系型。

主流的nosql数据库有redis、mongdb、hbase、couhsb等

二、关系型数据库与非关系型数据库的区别

1、数据存储方式不同

关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。

与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。

2、扩展方式不同

SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。

要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。

而NoSQL数据库是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。

3、对事务性的支持不同

如果数据操作需要提高事务性或者复杂数据查询需要控制执行计划,那么传统的sql数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。

虽然nosql数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大量数据处理方面。

三、非关系型数据库产生的背景

可用于解决处理web2.0纯动态网站类型的三高问题。

①high performance——对数据库高并发读写需求

②huge storage——对海量数据高效存储与访问需求

③high scalability && high availability——对数据库高扩展性与高可用性需求

关系型数据库和非关系型数据库都有各自的特点与应用场景,两者的紧密结合将会给Web2.0的数据库发展带来新的思路。让关系数据库关注在关系上,非关系型数据库关注在存储上。例如,在读写分离的MySQL数据库环境中,可以把经常访问的数据存储在非关系型数据库中,提升访问速度。

总的来说就是

关系型数据库:

实例–>数据库–>表(table)–>记录行(row)、数据字段(column)实例–>数据库–>表(table)–>记录行(row)、数据字段(column)

非关系型数据库:

实例–>数据库–>集合(collection)–>键值对(key-value)非关系型数据库不需要手动建数据库和集合(表)。

四、Redis简介

Redis是一个开源的,使用C语言编写的Nosql数据库

Redis基于内存允许并支持持久化,采用key-value(键值对)的存储形式,是目前分布式架构中不可或缺的一环。

Redis服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。即:在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若 CPU 资源比较紧张,采用单进程即可。
 

1、Redis的单线程模式

Redis服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。

若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降

若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。

 在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若 CPU 资源比较紧张,采用单进程即可。
 

2、Redis优点

①具有极高的数据读写速度:数据读取的速度最高可达110000次/秒,数据写入速度最高可达到 81000 次/s。

②支持丰富的数据类型:支持 key-value、Strings字符串(可以为整型、浮点型和字符串,通称为元素)、Lists列表(实现队列,元素不唯一,先入先出原则)、Hashes:hash散列值(hash的key必须是唯一的)、Sets集合(各不相同的元素)及 Ordered Sets有序集合 等数据类型操作。

③支持数据的持久化:可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。

④原子性:Redis 所有操作都是原子性的。

⑤支持数据备份:即 master-salve 模式的数据备份。
Redis作为基于内存运行的数据库,缓存是其最常应用的场景之一。除此之外,Redis常见应用场景还包括获取最新N个数据的操作,排行榜类应用,计数器应用,存储关系,实时分析系统,日志记录。

3、Redis的缺点

数据容量受物理内存的限制,不能用于海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上

五、Redis的安装部署

systemctl stop firewalld
setenforce 0
 
yum install -y gcc gcc-c++ make
 
tar zxvf redis-5.0.7.tar.gz -C /opt/
 
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install

cd /opt/redis-5.0.7/utils
./install_server.sh
……
慢慢回车
Please select the redis executable path []
手动输入
/usr/local/redis/bin/redis-server

Selected config:
Port           : 6379               #默认侦听端口为6379
Config file    : /etc/redis/6379.conf       #配置文件路径
Log file       : /var/log/redis_6379.log      #日志文件路径
Data dir       : /var/lib/redis/6379        #数据文件路径
Executable     : /usr/local/redis/bin/redis-server  #可执行文件路径
Cli Executable : /usr/local/bin/redis-cli     #客户端命令工具
ln -s /usr/local/redis/bin/* /usr/local/bin/
 
/etc/init.d/redis_6379 stop       #停止
/etc/init.d/redis_6379 start      #启动
/etc/init.d/redis_6379 restart      #重启
/etc/init.d/redis_6379 status     #状态

vim /etc/redis/6379.conf
 
70行,添加 监听的主机地址
bind 127.0.0.1 192.168.223.10       
 
93行,Redis默认的监听端口
port 6379                 
 
137行,启用守护进程
daemonize yes             
 
159行,指定 PID 文件
pidfile /var/run/redis_6379.pid       
 
167行,日志级别
loglevel notice               
 
172行,指定日志文件
logfile /var/log/redis_6379.log       
 
/etc/init.d/redis_6379 restart

六、Redis命令工具

redis-server    用于启动 Redis 的工具
redis-benchmark   用于检测 Redis 在本机的运行效率
redis-check-aof   修复 AOF 持久化文件
redis-check-rdb   修复 RDB 持久化文件
redis-cli     Redis命令行工具

1、redis-cli命令行工具

语法:redis-cli -h host -p port -a password
-h 指定远程主机
-p 指定 Redis 服务的端口号
-a

指定密码,未设置数据库密码可以省略-a 选项

如果不添加任何选项时,则会默认使用127.0.0.1:6379连接本机上的Redis数据库

redis-cli -h 192.168.170.111 -p 6379

此时没有密码,不需要-a就可以直接登录

2、redis-benchmark测试工具

redis-benchmark是官方自带的redis性能测试工具,可以有效的测试redis服务的性能。

基本的测试语法:redis-benchmark[选项] [选项值]

-h 指定服务器主机名。
-p 指定服务器端口。
-s 指定服务器 socket
-c 指定并发连接数。
-n 指定请求数。
-d 以字节的形式指定 SET/GET 值的数据大小。
-k 1=keep alive 0=reconnect 。
-r SET/GET/INCR 使用随机 key, SADD 使用随机值。
-P 通过管道传输请求。
-q  强制退出 redis。仅显示 query/sec 值。
-csv 以 CSV 格式输出。
-l 生成循环,永久执行测试。
-t 仅运行以逗号分隔的测试命令列表。
-I Idle 模式。仅打开 N 个 idle 连接并等待。

向IP地址为192.168.170.111、端口为6379的redis服务器发送100个并发连接与100000个请求来测试其性能。

redis-benchmark -h 192.168.170.111 -p 6379 -c 100 -n 100000

测试存取大小为100字节的数据包的性能

redis-benchmark -h 192.168.170.111 -p 6379 -q -d 100

测试本机上redis服务在进行set与lpush操作时的性能

redis-benchmark -t set,lpush -n 100000 -q

3、redis数据库常用命令

set   存放数据,命令格式为 set key value
get   获取数据,命令格式为 get key
keys  命令可以取符合规则的键值列表,通常情况可以结合*、?等选项来使用。
exists  命令可以判断键值是否存在。
del   命令可以删除当前数据库的指定 key。
type  命令可以获取 key 对应的 value 值类型。
例:
redis-cli -p 6379
 
set kgc ky35
get kgc
 
set k1 1
set k2 2
set k3 3
set y1 4
set y2 5
set y22 5

keys *
keys k*
keys y?
keys y??

keys *
del y2
keys *

exists kfc
exists hhanbao

rename 命令是对已有 key 进行重命名。(覆盖)
命令格式:rename 源key 目标key
 
使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。在实际使用过程中,建议先用 exists 命令查看目标 key 是否存在,然后再决定是否执行 rename 命令,以避免覆盖重要数据。
 
例:
keys y*
rename y22 y2
keys y*
get y1
get y2
rename y1 y2
keys y*
get y2

renamenx 命令的作用是对已有 key 进行重命名,并检测新名是否存在,如果目标 key 存在则不进行重命名。(不覆盖)
命令格式:renamenx 源key 目标key
例:
keys k*
renamenx k1 k2
keys k*
renamenx k1 k4
keys k*

dbsize 命令的作用是查看当前数据库中 key 的数目。
例:
keys *
dbsize

使用config set requirepass password命令设置密码
使用config get requirepass命令查看密码(一旦设置密码,必须先验证通过密码,否则所有操作不可用)
例:
config set requirepass 123123
auth 123123
config get requirepass
quit
redis-cli
keys *
auth 123123
keys *

4、Redis多数据库查用命令

Redis支持多数据库,redis默认情况下包含16个数据库,数据库名称是用数字0-15来依次命名的。

多数据库之间相互独立,互不干扰。多数据库间切换

命令格式:select序号

使用redis-cli连接redis数据库后默认使用的是序号为0的数据库。

127.0.0.1:6379> select 10     #切换至序号为 10 的数据库
127.0.0.1:6379[10]> select 15   #切换至序号为 15 的数据库
127.0.0.1:6379[15]> select 0    #切换至序号为 0 的数据库

多数据库之间的移动数据

格式:move 键值 序号
例:
set ky01 rmh
get ky01
 
select 5
get ky01
 
select 0
move ky01 5
get ky01
 
select 5
get ky01

清除数据库内数据
FLUSHDB :清空当前数据库数据
FLUSHALL :清空所有数据库的数据,慎用!

七、Redis的高可用

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。

但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

在redis中,实现高可用的技术主要包括持久化,主从复制,哨兵和集群,下面分别说明它们的作用,以及解决了什么样的问题。

①持久化:

持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。


②主从复制:

主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。


③哨兵:

在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。


④集群:

通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方

八、Redis持久化

1、持久化的功能:

Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。
 

2、Redis提供的两种方式进行持久化

①RDB持久化:

原理就是将redis在内存中的数据库记录定时保存到磁盘上。

②AOF持久化:

原理就是将redis的操作日志以追加的方式写入文件,类似于mysql的binlog

由于AOF持久化的实时性更好,当进程出现以外的适合丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍有需要。

3、RDB持久化

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘中(也被称为快照的持久化),用二进制压缩存储,保存的文件后缀名是rdb;当redis重新启动时,可以读取快照文件恢复数据。

3.1触发条件
①手动触发:

save命令和bgsave命令都可以生成RDB文件。

save命令会阻塞redis服务器进程,直到RDB文件创建完毕为止,在redis服务器阻塞期间,服务器不能处理任何命令请求。

而bgsave命令会创建一个子进程,由子进程来复制创建rdb文件,父进程(即redis主进程)则继续处理请求。

②自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化

save m n
 
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
 
vim /etc/redis/6379.conf
 
219行以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
 
254行指定RDB文件名
dbfilename dump.rdb
 
264行指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
 
242行是否开启RDB文件压缩
rdbcompression yes
 
其他自动触发机制
 
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。
3.2执行流程

①Redis父进程首先判断:当前是否正在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则ngsave命令直接返回。bgsave/bgrewriteaof的子进程不能同时执行,主要基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。

②父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,redis不能执行来自客户端的任何命令。

③父进程fork后,bgsave命令返回background saving started 信息并不再阻塞父进程,并可以响应其他命令

④子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换

⑤子进程发送信号给父进程表示完成,父进程更新统计信息。

3.3启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。

Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。
 

3、AOF持久化

RDB持久化是将进程写入文件,而AOF持久化则是将redis执行的每次写删命令记录到单独的日志文件中,查询操作时不会记录,当redis重启时再次执行AOF文件中的命令来恢复数据。

与RDB相比,AOF的实时性更好,因此已称为主流的持久化方案。

3.1开启AOF

redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置

vim /etc/redis/6379.conf
 
700行修改,开启AOF
appendonly yes
 
704行指定AOF文件名称
appendfilename "appendonly.aof"
 
796行是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
 
/etc/init.d/redis_6379 restart
3.2执行流程

由于需要记录redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。

AOF执行流程包括:

命令追加:将redis的写命令追加到缓冲区aof_buf;

文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;

文件重写(rewrite):定期重写AOF,达到压缩的目的。

3.2.1命令追加:

Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。

命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

3.2.2文件写入(write)和文件同步(sync)

Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:

为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。


3.2.2.1 AOF缓存区的同步文件策略存在三种同步方式,分别是
vim /etc/redis/6379.conf

729

①appendfsync always:

命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
 

②appendfsync always:
命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。

③appendfsync everysec:

命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

3.2.3文件重写

随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

文件重写之所以能够压缩AOF文件,原因在于:

①过期的数据不再写入文件

②无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(sadd myset v1, del myset)等。

③多条命令可以合并为一个如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

文件重写的触发,分为手动触发和自动触发

①手动触发:

直接调用bgrewriteaof命令,该命令的执行与bgsave有类似:都是fork子进程进行具体的工作,而且都只有在fork时阻塞。

②自动触发:

通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf

771

auto-aof-rewrite-percentage 100 :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作

auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF

关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。
 

文件重写的流程如下:

1 Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。

2 父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。

3.1 父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。

3.2 由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。

4 子进程根据内存快照,按照命令合并规则写入到新的AOF文件。

5.1 子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。

5.2 父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。

5.3 使用新的AOF文件替换老文件,完成AOF重写。
 

3.3、启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。

当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。

Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

4、RDB和AOF的优缺点

4.1RDB持久化
①优点:

RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。与AOF相比,RDB最重要的优点之一就是对性能的影响相对较小。

②缺点:

RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。

对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

4.2AOF持久化

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。

对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。

AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。
 

九、Redis性能管理

----- 查看Redis内存使用 -----
 
redis-cli -h 192.168.170.111 -p 6379
192.168.223.10:6379> info memory

1、内存碎片率

操系统分配的内存值used_memory_rss除以Redis使用的内存值used_memory计算得出

内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)

跟踪内存碎片率对理解redis实例的资源型是非常重要的:

①内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低
②内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,并重启 Redis 服务器。
③内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。
 

2、内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

2.1避免内存交换发生的方法:

①针对缓存数据大小选择安装Redis实例

②尽可能的使用Hash数据结构存储

③设置key的过期时间

3、内回收key

保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。

配置文件中修改 maxmemory-policy 属性值:

vim /etc/redis/6379.conf
 
598取消注释
maxmemory-policy noenviction
volatile-lru 使用LRU算法从已设置过期时间的数据集合中淘汰数据
volatile-ttl 从已设置过期时间的数据集合中挑选即将过期的数据淘汰

volatile-random

从已设置过期时间的数据集合中随机挑选数据淘汰
allkeys-lru 使用LRU算法从所有数据集合中淘汰数据
allkeys-random 从数据集合中任意选择数据淘汰
noenviction 禁止淘汰数据

相关推荐

  1. Redis 命令以及结构

    2024-04-02 19:14:06       34 阅读
  2. Redis 命令

    2024-04-02 19:14:06       57 阅读
  3. docker使用以及命令

    2024-04-02 19:14:06       40 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-04-02 19:14:06       94 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-04-02 19:14:06       101 阅读
  3. 在Django里面运行非项目文件

    2024-04-02 19:14:06       82 阅读
  4. Python语言-面向对象

    2024-04-02 19:14:06       91 阅读

热门阅读

  1. 打造专属wow服务器配置需求!

    2024-04-02 19:14:06       35 阅读
  2. 前端低代码平台的使用学习

    2024-04-02 19:14:06       28 阅读
  3. Qt实现Kermit协议(二)

    2024-04-02 19:14:06       38 阅读
  4. C++中重载和重写的区别

    2024-04-02 19:14:06       33 阅读
  5. 解密SFP和QSFP:你需要知道的一切

    2024-04-02 19:14:06       42 阅读
  6. Git使用

    2024-04-02 19:14:06       39 阅读
  7. 每日一题: 为什么要使用Spring?

    2024-04-02 19:14:06       38 阅读
  8. 【数据库】[MYSQL][面试题]常见数据库知识整理

    2024-04-02 19:14:06       34 阅读
  9. C++ map 常用部分

    2024-04-02 19:14:06       40 阅读
  10. 【zml】vp9 vp8

    2024-04-02 19:14:06       36 阅读
  11. 简单的HTML

    2024-04-02 19:14:06       32 阅读