语音识别:基于HMM

HMM语音识别的解码过程

从麦克风采集的输入音频波形被转换为固定尺寸的一组声学向量:

\mathbf{Y}_{1:T} = \mathbf{y}_{1}, \mathbf{y}_{2}, ..., \mathbf{y}_{T}

其中\mathbf{y}_{t}, t=1,2, ...,TD维的语音特征向量(例如MFCC)。

解码器尝试去找到上述特征向量序列对应的单词(word)的序列:

\mathbf{w}_{1:L} = w_{1}, w_{2},...,w_{L}

单词序列的长度是L

也即是解码器尝试寻找模型产生\mathbf{Y}的那个最有可能的单词序列\mathbf{w}

\widehat{\mathbf{w}} = \underset{\mathbf{w}}{arg max}{P(\mathbf{w} | \mathbf{Y})}

经过贝叶斯公式:

\widehat{\mathbf{w}} = \underset{\mathbf{w}}{arg max}\left \{ P(\mathbf{Y} | \mathbf{w}) P(\mathbf{w}) \right \}

似然概率P(\mathbf{Y} | \mathbf{w})是语音识别的声学模型,先验概率P(\mathbf{w})是语音模型。

P(\mathbf{Y}|\mathbf{w}) = \underset{\mathbf{Q}}{\sum_{}}P(\mathbf{Y|Q})P(\mathbf{Q}|\mathbf{w}))

\mathbf{Q} = \mathbf{q}^{(w_{1})}, \mathbf{q}^{(w_{2})}, ..., \mathbf{q}^{(w_{L})}

\mathbf{q}^{(w_{l})} = q_{1}, q_{2}, ...,q_{K_{w_{l}}}是一个单词由基本音素组成的发音序列(也就是单词的音标),

\mathbf{Q}是该句子的一个可能发音序列,由该句子的每个单词的基本音素拼接而成。

这里的求和是使用了全概率公式,因为一个单词可能由多个发音,所以句子的发音序列也是多个。

对于该句子的一个可能发音序列\mathbf{Q},可得

P(\mathbf{Q}|\mathbf{w}) = \prod_{l=1}^{L}P(\mathbf{q}^{(w_{l})}|w_{l})

剩下就是计算P(\mathbf{Y|Q})了。

P(\mathbf{Y|Q}) = \underset{\mathbf{S} }{\sum}P(\mathbf{S}, \mathbf{Y} | \mathbf{Q})

给定发音序列,对每一个可能的状态序列\mathbf{S}求句子HMM的概率。

\mathbf{S} = S_0, S_1, ... , S_{T+1}是特征序列对应的一个候选的状态序列。

P(\mathbf{S}, \mathbf{Y} | \mathbf{Q}) = a_{S_{0}S_{1}}\prod_{t=1}^{T}b_{S_{t}}(\mathbf{y}_t)a_{S_{t}S_{t+1}}

解码过程不需要计算所有可能状态序列的似然概率,我们只需要使用维特比(Viterbi)算法获取概率最大的那个状态序列路径。

P^{*}(\mathbf{Y}|\mathbf{Q}, \lambda ) = \underset{\mathbf{S}}{max}P(\mathbf{S}, \mathbf{Y}|\mathbf{Q}, \lambda )

模型参数:

HMM语音识别声学模型的训练过程(单音素)

R个语料片段,每个语料片段对应的特征向量序列为\mathbf{Y}^{(r)},r = 1, 2, ..., R\mathbf{Y}^{(r)}序列的长度为T^{(r)}

HMM的训练(选择正确的参数)意味着:找到模型的参数(如转移概率和发射概率),使得给定的所有输入语料\mathbf{Y}^{(r)},r = 1, 2, ..., R的概率最大:

关于\lambda

Maximize \sum_{r=0}^{R}\underset{\mathbf{S}}{\sum }p(\mathbf{Y}^{(r)}, \mathbf{S}|\lambda )

E-step

前向概率:

\alpha _{t}^{(rj)} = P(\mathbf{Y}_{1:t}^{(r)}, S_{t} = j;\lambda )

即对\mathbf{Y}^{(r)}的前t个特征向量与t时刻的状态为j的联合概率;

后向概率:

\beta _{t}^{(rj)} = P(\mathbf{Y}_{t+1:T^{(r)}}^{(r)},|S_{t} = i;\lambda )

给定t时刻的状态为i,模型生成t+1到T^{(r)}之间的特征向量序列的条件概率。

给定前向和向后的概率,对于任何给定的语料r,模型在时间t时占据状态j的概率是

其中,P^{r} = p(Y^{(r)};\lambda )可通过前向概率或者后向概率的递推公式获得,等于t = T^{(r)}+1时刻的前向概率,也等于t = 0时刻的后向概率。

M-step

对于所有的语料,给定初始的模型参数\lambda _{0}(均值,方差,转移概率),可通过如下的公式迭代参数

注意,这里使用的是单个高斯分布建模观察概率b_{j}(\mathbf{y}_{t}^{(r)}) = N(\mathbf{y}_{t}^{(r)}, \mu _{j}, \Sigma _{j})而不是GMM。

Kaldi中使用的HMM声学模型训练方法

因为转移概率对识别结果的影响很小,甚至有时候可以忽略。Kaldi中一般是将转移概率固定不变,不在训练中更新转移概率。声学模型包含的信息主要是状态定义和各个状态的观察概率(发射概率)分布。

使用从左到右的线性HMM模型结构(只有向右跳转和自跳转),训练过程中只更新每个状态的高斯混合模型(GMM)参数。

上面介绍的HMM训练方法是经典的训练HMM的方法(baum welch算法),该算法就是在给定一个初始的模型参数,通过不断的E-step,M-step迭代模型的参数。一种更加实际的方法是使用Viterbi训练方法:

1、给定初始的参数\lambda^{0}

2、使用维特比算法和当前的参数\lambda ^{k}找到能够解释\mathbf{Y}^{(r)}, r = 1, 2,..., R的最可能的状态序列\mathbf{Z}^{*},这样就得到了每一帧\mathbf{y}^{(r)}_{t}对应的状态。这个过程也叫做对齐(Align)或者强制对齐(Forced alignment),目的是获取每一帧对应的状态。

3、使用统计公式更新模型的参数\lambda ^{k+1}。因为此时已经有大量已知隐藏状态和特征(观察值)的帧,所以可以更新每个状态对应的发射概率分布(GMM)的均值和协方差以及权重等参数(可能会用到GMM的EM算法估计GMM的参数)

4、重复步骤2、3,直到状态序列不再更新(收敛)。

参考:

[1] Gales and Young (2007). “The Application of Hidden Markov Models in Speech Recognition”, Foundations and Trends in Signal Processing , 1 (3), 195–304: section 2.2.\
[2]《Kaldi语音识别实战》

相关推荐

  1. 基于深度学习的语音识别

    2024-04-01 00:48:01       28 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-04-01 00:48:01       98 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-04-01 00:48:01       106 阅读
  3. 在Django里面运行非项目文件

    2024-04-01 00:48:01       87 阅读
  4. Python语言-面向对象

    2024-04-01 00:48:01       96 阅读

热门阅读

  1. 什么是数据仓库

    2024-04-01 00:48:01       41 阅读
  2. 随机规划:求解报童问题期望值模型的算法方案

    2024-04-01 00:48:01       34 阅读
  3. 云资源调度和管理系统

    2024-04-01 00:48:01       32 阅读
  4. 日本出国留学一年费用大概多少钱

    2024-04-01 00:48:01       38 阅读
  5. ###用sh ``` 用sh ``json失败

    2024-04-01 00:48:01       47 阅读
  6. git-常用命令

    2024-04-01 00:48:01       44 阅读
  7. 【技术】Vue3 组件通讯方法有哪些

    2024-04-01 00:48:01       35 阅读
  8. python之函数的参数

    2024-04-01 00:48:01       43 阅读
  9. Git 实战教程

    2024-04-01 00:48:01       45 阅读
  10. FFmpeg入门指南

    2024-04-01 00:48:01       37 阅读