Isolation Forest 简介

1. 简介

        孤立森林 iForest(Isolation Forest)是一种无监督学习算法,用于识别异常值。其基本原理是:异常数据由于数量较少且与正常数据差异较大,因此在被隔离时需要较少的步骤。

两个假设:

1. 异常的值是非常少的(如果异常值很多,可能被识别为正常的);
2. 异常值与其他值的差异较大(主要是全局上都为异常的异常,局部小异常可能发现不了,因为差异并不大)。

2. 具体流程

2.1 训练森林

    子采样: 首先从整个数据集中随机抽取一定数量的样本来为构建树做准备。这些抽样的子集大小通常远小于原始数据集的大小,这样可以限制树的大小,并且减少计算复杂度。
    构建孤立树 (iTrees): 对于每个子采样集,算法构建一棵孤立树。构建孤立树的过程是递归的。在每个节点,算法随机选择一个特征,并在该特征的最大值和最小值之间随机选择一个分割值。然后,数据根据这个分割值将样本分到左子树或右子树(这里其实就是简单的将样本中特征小于这个分割点的样本分到左边,其次分到右边)。这个过程的结束条件:树达到限定的高度, 节点中的样本数量到一定的数目,或者所有样本的所选特征值都是同一个值。
    森林构建: 重复1-2构建完特定数量的孤立树,集合为孤立森林。

2.2 首先要明确几个相关概念

    路径长度( h ( x ) h(x) h(x)): 指样本通过该孤立树构建阶段的特征选择方式,从树的根节点到达该样本被孤立的节点(被孤立就是意味着这个样本最终到达的树的叶子节点)所需要的边数。
    平均路径长度 E ( h ( x ) ) E(h(x)) E(h(x)): 该样本在森林中所有树的路径长度的平均值。
    树的平均路径长度:
    c ( n ) = 2 H ( n − 1 ) − 2 ( n − 1 ) n c(n)=2H(n-1)-\frac{2(n-1)}{n} c(n)=2H(n−1)−n2(n−1)​

-----
iForest 适用于连续数据的异常检测,将异常定义为 容易被孤立的离群点。 具体的,确定一个维度的特征,
并在最大值和最小值之间随机选择一个值 x ,然后按照小于 x 和 大于等于x 可以把数据分成左右两组。
然后再随机的按某个特征维度的取值把数据进行细分,重复上述步骤,直到无法细分,
直到数据不可再分。直观上,异常数据较少次切分就可以将它们单独划分出来,而正常数据恰恰相反。
sklearn.ensemble.IsolationForest
contamination:默认为auto,数据集中异常样本的比例
 
优点:高精准度

3. 算法优缺点

3.1 优点

    1. 高效性:IF特别适合处理大数据集。它具有线性的时间复杂度,并且由于使用了子采样,使得在计算上更加高效。
    2. 易于并行化: 和RF一样,构建孤立树是独立的过程,构建森林可以并行化。

3.2 缺点

    1. 异常值比例敏感性: 如果数据集中异常值的比例相对较高,其效果可能就会下降,因为它是基于异常值“少而不同”的假设。
    2. 对局部异常检测不敏感:因为 “少而不同的” 前提条件决定主要解决全局异常的特点,对在局部区域表现出轻微异常特征的点检测不是很敏感。
    3. 不适用于特别高维的数据:IF不会因为特征的多少而降低算法的效率,但也正因为每次只随机用其中一个特征作为分割的特征,如果特征维度很高,就会有很多特征没有用到。

4. demo

4.1 数据准备

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

n_samples, n_outliers = 120, 10
rng = np.random.RandomState(0)
cluster_1 = 0.4 * rng.randn(n_samples, 2) + np.array([2, 2])
cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2])
outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2))
X = np.concatenate([cluster_1, cluster_2, outliers])
y = np.concatenate(
    [np.ones((2 * n_samples), dtype=int), -np.ones(n_outliers, dtype=int)])

scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
handles, labels = scatter.legend_elements()
plt.axis("square")
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
plt.title("data distribution")
plt.show()

4.2 模型预测&可视化

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

n_samples, n_outliers = 120, 10
rng = np.random.RandomState(0)
cluster_1 = 0.4 * rng.randn(n_samples, 2) + np.array([2, 2])
cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2])
outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2))
X = np.concatenate([cluster_1, cluster_2, outliers])
y = np.concatenate(
    [np.ones((2 * n_samples), dtype=int), -np.ones(n_outliers, dtype=int)])

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
from sklearn.ensemble import IsolationForest
clf = IsolationForest(max_samples=100, random_state=0)
clf.fit(X_train)
y_pre_score_test = clf.decision_function(cluster_1)  # -1为异常, 1为正常,
y_pre_label_test = clf.predict(cluster_1)

# ---------结果可视化--------------
# 通过网格的方式得到location的x和y坐标
xx, yy = np.meshgrid(np.linspace(-6, 6, 60), np.linspace(-6, 6, 60))
# concat x和y 得到输入的坐标
input_location = np.c_[xx.ravel(), yy.ravel()]
Z = clf.decision_function(input_location)
Z = Z.reshape(xx.shape)

plt.title("IsolationForest")
plt.contourf(xx, yy, Z, camp=plt.cm.Blues_r)
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=20, edgecolor='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green', s=20, edgecolor='k')
c = plt.scatter(outliers[:, 0], outliers[:, 1], c='red', s=20, edgecolor='k')
plt.axis('tight')
plt.xlim((-6, 6))
plt.ylim((-6, 6))
plt.legend([b1, b2, c], ["train data", "test data", "outlier"], loc="best")
plt.show()

相关推荐

  1. RPC 简介

    2024-04-14 22:30:06       61 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-04-14 22:30:06       94 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-04-14 22:30:06       100 阅读
  3. 在Django里面运行非项目文件

    2024-04-14 22:30:06       82 阅读
  4. Python语言-面向对象

    2024-04-14 22:30:06       91 阅读

热门阅读

  1. Python学习之-Pandas详解

    2024-04-14 22:30:06       42 阅读
  2. linux 常用的命令汇总

    2024-04-14 22:30:06       37 阅读
  3. 【无标题】

    2024-04-14 22:30:06       29 阅读
  4. 深入理解Linux网络工具:netstat命令的高级应用

    2024-04-14 22:30:06       33 阅读
  5. mysql 查询实战1-题目

    2024-04-14 22:30:06       39 阅读
  6. Vue router 与 route 的区别

    2024-04-14 22:30:06       32 阅读
  7. 21、Lua 面向对象

    2024-04-14 22:30:06       39 阅读
  8. 大厂基础面试题(之四)

    2024-04-14 22:30:06       32 阅读