MySQL MVCC

版本链

我们前面说过,对于使用InnoDB存储引擎的表来说,它的聚簇索引记录中都包含两个必要的隐藏列(row_id并不是必要的,我们创建的表中有主键或者非NULL的UNIQUE键时都不会包含row_id列):

  • trx_id:每次一个事务对某条聚簇索引记录进行改动时,都会把该事务的事务id赋值给trx_id隐藏列。

  • roll_pointer:每次对某条聚簇索引记录进行改动时,都会把旧的版本写入到undo日志中,然后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。
      
    比方说我们的表hero现在只包含一条记录:

     mysql> SELECT * FROM hero;
     +--------+--------+---------+
     | number | name   | country |
     +--------+--------+---------+
     |      1 | 刘备   | 蜀      |
     +--------+--------+---------+
     1 row in set (0.07 sec)
    

    假设插入该记录的事务id为80,那么此刻该条记录的示意图如下所示:
    在这里插入图片描述

ReadView

对于使用 READ UNCOMMITTED 隔离级别的事务来说,由于可以读到未提交事务修改过的记录,所以直接读取记录的最新版本就好了;对于使用 SERIALIZABLE 隔离级别的事务来说,设计InnoDB的大佬规定使用加锁的方式来访问记录(加锁是什么我们后续文章中说);对于使用 READ COMMITTED 和 REPEATABLE READ 隔离级别的事务来说,都必须保证读到已经提交了的事务修改过的记录,也就是说假如另一个事务已经修改了记录但是尚未提交,是不能直接读取最新版本的记录的,核心问题就是:需要判断一下版本链中的哪个版本是当前事务可见的。为此,设计InnoDB的大佬提出了一个ReadView的概念,这个ReadView中主要包含4个比较重要的内容:

m_ids:表示在生成ReadView时当前系统中活跃的读写事务的事务id列表。
min_trx_id:表示在生成ReadView时当前系统中活跃的读写事务中最小的事务id,也就是m_ids中的最小值。
max_trx_id:表示生成ReadView时系统中应该分配给下一个事务的id值。
	小贴士:注意max_trx_id并不是m_ids中的最大值,事务id是递增分配的。
	比方说现在有id为1,2,3这三个事务,之后id为3的事务提交了。那么一个新的读事务在生成ReadView时,
	m_ids就包括1和2,min_trx_id的值就是1,max_trx_id的值就是4。
creator_trx_id:表示生成该ReadView的事务的事务id。
	小贴士:我们前面说过,只有在对表中的记录做改动时(执行INSERT、DELETE、UPDATE这些语句时)
	才会为事务分配事务id,否则在一个只读事务中的事务id值都默认为0。

有了这个ReadView,这样在访问某条记录时,只需要按照下面的步骤判断记录的某个版本是否可见:

  • 如果被访问版本的trx_id属性值与ReadView中的creator_trx_id值相同,意味着当前事务在访问它自己修改过的记录,所以该版本可以被当前事务访问。
  • 如果被访问版本的trx_id属性值小于ReadView中的min_trx_id值,表明生成该版本的事务在当前事务生成ReadView前已经提交,所以该版本可以被当前事务访问。
  • 如果被访问版本的trx_id属性值大于ReadView中的max_trx_id值,表明生成该版本的事务在当前事务生成ReadView后才开启,所以该版本不可以被当前事务访问。
  • 如果被访问版本的trx_id属性值在ReadView的min_trx_id和max_trx_id之间,那就需要判断一下trx_id属性值是不是在m_ids列表中,如果在,说明创建ReadView时生成该版本的事务还是活跃的,该版本不可以被访问;如果不在,说明创建ReadView时生成该版本的事务已经被提交,该版本可以被访问。

如果某个版本的数据对当前事务不可见的话,那就顺着版本链找到下一个版本的数据,继续按照上面的步骤判断可见性,依此类推,直到版本链中的最后一个版本。

在MySQL中,READ COMMITTED 和 REPEATABLE READ隔离级别的的一个非常大的区别就是它们生成 ReadView 的时机不同。我们还是以表hero为例来,假设现在表hero中只有一条由事务id为80的事务插入的一条记录:

mysql> SELECT * FROM hero;
+--------+--------+---------+
| number | name   | country |
+--------+--------+---------+
|      1 | 刘备   | 蜀      |
+--------+--------+---------+
1 row in set (0.07 sec)

接下来看一下 READ COMMITTED 和 REPEATABLE READ 所谓的生成ReadView的时机不同到底不同在哪里。

READ COMMITTED —— 每次读取数据前都生成一个ReadView

  1. 比方说现在系统里有两个事务 id 分别为100、200的事务在执行:

    # Transaction 100
    BEGIN;
    UPDATE hero SET name = '关羽' WHERE number = 1;
    UPDATE hero SET name = '张飞' WHERE number = 1;
    
    # Transaction 200
    BEGIN;
    # 更新了一些别的表的记录
    ...
    
    小贴士:再次强调一遍,事务执行过程中,
    只有在第一次真正修改记录时(比如使用INSERT、DELETE、UPDATE语句),才会被分配一个单独的事务id,这个事务id是递增的。
    所以我们才在Transaction 200中更新一些别的表的记录,目的是让它分配事务id。
    

此刻,表hero中number为1的记录得到的版本链表如下所示:
在这里插入图片描述

  1. 假设现在有一个使用 READ COMMITTED 隔离级别的事务开始执行:
# 使用READ COMMITTED隔离级别的事务
BEGIN;

# SELECT1:Transaction 100、200未提交
SELECT * FROM hero WHERE number = 1; # 得到的列name的值为'刘备'

这个 SELECT1 的执行过程如下:

在执行SELECT语句时会先生成一个ReadView,
ReadView 的 m_ids 列表的内容就是[100, 200],min_trx_id为100,max_trx_id为201,creator_trx_id为0。

然后从版本链中挑选可见的记录,从图中可以看出,
最新版本的列name的内容是'张飞',该版本的trx_id值为100,在m_ids列表内,所以不符合可见性要求,

根据roll_pointer跳到下一个版本。
下一个版本的列name的内容是'关羽',该版本的trx_id值也为100,也在m_ids列表内,所以也不符合要求,

继续跳到下一个版本。
下一个版本的列name的内容是'刘备',该版本的trx_id值为80,小于ReadView中的min_trx_id值100,所以这个版本是符合要求的,
最后返回给用户的版本就是这条列name为'刘备'的记录。
  1. 之后,我们把事务 id 为 100 的事务提交一下,就像这样:
# Transaction 100
BEGIN;
UPDATE hero SET name = '关羽' WHERE number = 1;
UPDATE hero SET name = '张飞' WHERE number = 1;
COMMIT;
  1. 然后再到事务 id 为 200 的事务中更新一下表hero中number为1的记录:
# Transaction 200
BEGIN;

# 更新了一些别的表的记录
...
UPDATE hero SET name = '赵云' WHERE number = 1;
UPDATE hero SET name = '诸葛亮' WHERE number = 1;

此刻,表hero中number为1的记录的版本链就长这样:
在这里插入图片描述

  1. 然后再到刚才使用 READ COMMITTED 隔离级别的事务中继续查找这个 number 为 1 的记录,如下:
# 使用READ COMMITTED隔离级别的事务
BEGIN;

# SELECT1:Transaction 100、200均未提交
SELECT * FROM hero WHERE number = 1; # 得到的列name的值为'刘备'

# SELECT2:Transaction 100提交,Transaction 200未提交
SELECT * FROM hero WHERE number = 1; # 得到的列name的值为'张飞'

这个 SELECT2 的执行过程如下:( 在执行 SELECT 语句时会又会单独生成一个ReadView)

在执行 SELECT 语句时会又会单独生成一个ReadView,
该ReadView的m_ids列表的内容就是[200](事务id为100的那个事务已经提交了,所以再次生成快照时就没有它了),
min_trx_id为200,max_trx_id为201,creator_trx_id为0。

然后从版本链中挑选可见的记录,从图中可以看出,
最新版本的列name的内容是'诸葛亮',该版本的trx_id值为200,在m_ids列表内,所以不符合可见性要求,

根据roll_pointer跳到下一个版本。
下一个版本的列name的内容是'赵云',该版本的trx_id值为200,也在m_ids列表内,所以也不符合要求,

继续跳到下一个版本。
下一个版本的列name的内容是'张飞',该版本的trx_id值为100,小于ReadView中的min_trx_id值200,所以这个版本是符合要求的,
最后返回给用户的版本就是这条列name为'张飞'的记录。

以此类推,如果之后事务id为200的记录也提交了,再此在使用READ COMMITTED隔离级别的事务中查询表hero中number值为1的记录时,得到的结果就是’诸葛亮’了,具体流程我们就不分析了。总结一下就是:使用READ COMMITTED隔离级别的事务在每次查询开始时都会生成一个独立的ReadView。

REPEATABLE READ —— 在第一次读取数据时生成一个ReadView

依次类推

PURGE

随着系统的运行,在确定系统中包含最早产生的那个ReadView的事务不会再访问某些update undo日志以及被打了删除标记的记录后,有一个后台运行的purge线程会把它们真正的删除掉。


从上面的描述中我们可以看出来,所谓的MVCC(Multi-Version Concurrency Control ,多版本并发控制)指的就是在使用READ COMMITTD、REPEATABLE READ这两种隔离级别的事务在执行普通的SEELCT操作时访问记录的版本链的过程,这样子可以使不同事务的读-写、写-读操作并发执行,从而提升系统性能。READ COMMITTD、REPEATABLE READ这两个隔离级别的一个很大不同就是:生成ReadView的时机不同,READ COMMITTD在每一次进行普通SELECT操作前都会生成一个ReadView,而REPEATABLE READ只在第一次进行普通SELECT操作前生成一个ReadView,之后的查询操作都重复使用这个ReadView就好了。

相关推荐

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2023-12-27 08:24:02       94 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2023-12-27 08:24:02       100 阅读
  3. 在Django里面运行非项目文件

    2023-12-27 08:24:02       82 阅读
  4. Python语言-面向对象

    2023-12-27 08:24:02       91 阅读

热门阅读

  1. Mac_通过chmod处理文件权限

    2023-12-27 08:24:02       44 阅读
  2. 处理go中clientv3连接etcd包异常

    2023-12-27 08:24:02       55 阅读
  3. AWS的EC2之间ping不通,服务之间不通,怎么办

    2023-12-27 08:24:02       49 阅读
  4. 2023-全国智能驾驶测试赛-车联网安全专项赛WP (Re)

    2023-12-27 08:24:02       44 阅读
  5. python 读取pdf中的文本

    2023-12-27 08:24:02       48 阅读
  6. gRPC-Go基础(1)protoc的使用

    2023-12-27 08:24:02       53 阅读
  7. TensorFlow是什么

    2023-12-27 08:24:02       59 阅读
  8. LeetCode 26. 删除有序数组中的重复项

    2023-12-27 08:24:02       67 阅读
  9. 初试Kafka

    2023-12-27 08:24:02       58 阅读
  10. python大作业 写作思路

    2023-12-27 08:24:02       47 阅读
  11. gRPC-Go基础(1)基础知识

    2023-12-27 08:24:02       59 阅读
  12. 深入理解 golang 中的反射机制

    2023-12-27 08:24:02       56 阅读